Lea Alhilali, MD Profile picture
Apr 13, 2023 19 tweets 8 min read Read on X
1/Is trying to understand peripheral nerve injury getting on your last nerve? Is the brachial plexus breaking you?

Here’s a #tweetorial to help you understand, recognize & remember the classification of peripheral nerve injuries
#medtwitter #meded #FOAMed #neurorad #neurotwitter Image
2/Normally the peripheral nerve is protected by surrounding myelin & connective tissue.

Think of the nerve like a hot dog. It is wrapped nice & cozy: first, by toppings right up against the hot dog (myelin) & then a bun holding it all in (connective tissue) Image
3/Although nerve injury can be compressive or stretch or even from radiation, it is easiest to think of it like a punch to the face. Imaging that sort of injury hits the nerve, like a fist to your face Image
4/Type of injury you get depends on how hard you were hit.

At its mildest, a punch gives you a bruise or black eye. This is the mildest nerve injury, neuropraxia.

Myelin is injured, so you get a conductive deficit, but it heals—just like you’ll eventually open that eye again Image
5/If the hit is harder, you don’t just get soft tissue injury, you break a bone. This is degree of nerve injury is called axonotmesis

The axon is disrupted, but the connective tissue is intact. So it can regenerate, like a fracture forms callus to fill the defect Image
6/Finally, the hardest hit is decapitation. This is the most severe injury—neurotmesis--axon & connective tissue are both disrupted.

Nerve is essentially severed. Like decapitation, the nerve can’t recover from this. Although, unlike decapitation, surgery can help this injury Image
7/This is the Seddon classification of injury.

But it’s missing something—bc it groups all nerve “fractures” or axonotmesis as the same.

But not all fractures are equal. There’s a big difference between a nasal fx & a LeFort. Sunderland classification makes this distinction Image
8/Sunderland classification divides the nerve “fractures” into different severities—depending on how much of the axon/connective tissue is disrupted

Sunderland class 2/3 are like mild fx’s that can heal on their own, while class 4 are the facial smash fractures that need surgery Image
9/Think of the connective tissue like scaffolding—if it's intact, nerve can use the scaffolding to rebuild

If only the axon is injured, scaffold is intact & it’ll heal

If only endoneurium is disrupted, there’s enough to rebuild

But only having perineurium is often not enough Image
10/How do these injuries look on imaging?

Think of the nerve like a vessel.

Nerves deliver information to muscles the way your carotids deliver blood/oxygen to your brain.

Muscles are the end organ for nerves the way your brain is the end organ for your carotid Image
11/How much damage you do the nerve is like how much stenosis there is in the carotid.

The worse the stenosis, the more likely you are to have a stroke.

Similarly, the worse the nerve injury, the more likely you are to have denervation changes in the muscle Image
12/Class 1 or nerve bruise is like mild calcified plaque you see in the carotid everyday. It does mean there’s been endothelial injury, but it’s not severe enough to cause any stroke.

So the nerve is bright on imaging from the injury, but the muscle is normal Image
13/Here is an example of a Class 1 injury—this is a patient with right jaw paresthesias after a right mandibular tooth extraction. You can see that the right inferior alveolar nerve is bright compared to the left—but no muscle signal Image
14/Class 2/3 or mild nerve fracture is like a dissection. Part of the wall is disrupted like a dissection, but part is intact

Vessel is often enlarged in dissection. Nerve is too enlarged

Also, dissections throw emboli causing end organ damage—so have muscle signal here too Image
15/Here’s an example of class 2/3 injury. Nerves of the brachial plexus are enlarged, like a vessel w/a false lumen added to it, but there’s no discontinuity.

You can’t see the difference between axon & endoneurium disruption on imaging, so they’re grouped together Image
16/In class 4 injury (serious fx) only perineurium remains.

It’s like a contained nerve rupture—like a pseudoaneurysm is like a contained vessel rupture. So it’s focally enlarged (neuroma) like a vessel is focally enlarged at a pseudoaneurysm Image
17/Class 5 injury is nerve decapitation—it’s like thrombosis of an artery, nothing gets through

And just like how thrombosis is associated w/stroke, these injuries have muscle denervation.

But unlike real decapitation, some of these injuries may be amenable to microsurgery Image
18/Here is an example of class 5 injury. Nerves of the brachial plexus are focally disrupted, and there is fluid in the gap, just like how there would be thrombus in the gap of a thrombosed vessel or squirting blood in the gap of a decapitated head 😳 Image
19/So now you understand the pathology behind peripheral nerve injuries, how they are classified, and how to recognize them on imaging

Hopefully, now you can approach these injuries without being nervous! Image

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Lea Alhilali, MD

Lea Alhilali, MD Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @teachplaygrub

Jun 6
1/Raise your hand if you’re confused by the BRACHIAL PLEXUS!

I could never seem to remember or understand it—but now I do & I’ll show you how!

A thread so you will never fear brachial plexus anatomy again! Image
2/Everyone has a mnemonic to remember brachial plexus anatomy.

I’m a radiologist, so I remember one about Rad Techs.

But just remembering the names & their order isn’t enough.

That is just the starting point--let’s really understand it Image
3/From the mnemonic, we start with the roots—the cervical nerve roots.

I remember which roots make up the brachial plexus by remembering that it supplies the hand.

You have 5 fingers on your hand so we start with C5 & we take 5 nerve roots (C5-T1). Image
Read 20 tweets
Jun 4
1/Having trouble remembering what to look for in vascular dementia on imaging?

Almost everyone w/memory loss has infarcts. Which are important?

The latest @theajnr SCANtastic has what you need to know:

ajnr.org/content/46/5/1…Image
@TheAJNR 2/Vascular cognitive impairment, or its most serious form, vascular dementia, used to be called multi-infarct dementia.

It was thought dementia directly resulted from brain volume loss from infarcts, w/the thought that 50-100cc of infarcted related volume loss caused dementia Image
@TheAJNR 3/But that’s now outdated. We now know vascular dementia results from diverse pathologies that all share a common vascular origin.

It’s possible to lose little volume from infarct & still result in dementia.

So if infarcts are common—which contribute to vascular dementia? Image
Read 20 tweets
Jun 2
1/Having trouble remembering how to differentiate dementias on imaging?

Is looking at dementia PET scans one of your PET peeves?

Here’s a thread to show you how to remember the imaging findings in dementia & never forget! Image
2/The most common functional imaging used in dementia is FDG PET. And the most common dementia is Alzheimer’s disease (AD).

On PET, AD demonstrates a typical Nike swoosh pattern—with decreased metabolism in the parietal & temporal regions Image
3/The swoosh rapidly tapers anteriorly—& so does hypometabolism in AD in the temporal lobe. It usually spares the anterior temporal poles.

So in AD look for a rapidly tapering Nike swoosh, w/hypometabolism in the parietal/temporal regions—sparing the anterior temporal pole Image
Read 16 tweets
May 27
1/Feel perplexed by the lumbosacral plexus??

This plexus doesn’t have to be so complex-us

Here’s what you need to know from this month’s @Radiographics!



@cookyscan1 @RadG_editor doi.org/10.1148/rg.240…Image
@RadioGraphics @cookyscan1 @RadG_Editor 2/The lumbosacral plexus is like a love story

The lumbar & sacral plexuses met & fell in love

They loved each other so much they came together to create the nerves to the lower extremities! Image
@RadioGraphics @cookyscan1 @RadG_Editor 3/Lumbosacral plexus is essentially formed by the nerves from L1-S4 (with some other small contributions)

Remember this bc the plexus is to the lower extremitieis and L & 1 look legs and S & 4 look like feet! Image
Read 12 tweets
May 6
1/Have disagreements between radiologists on the degree of cervical canal stenosis become a pain in the neck?

Worried about sticking your neck out & calling severe cervical stenosis?

This month’s @theAJNR SCANtastic has the latest about Cspine MRI!

ajnr.org/content/46/4/7…Image
@TheAJNR 2/In the lumbar spine, it is all about the degree of canal narrowing & room for nerve roots.

In the cervical spine, we have another factor to think about—the cord.

Cord integrity is key. No matter the degree of stenosis, if the cord isn’t happy, the patient won’t be either Image
@TheAJNR 3/Cord flattening, even w/o canal stenosis, can cause myelopathy.

No one is quite sure why.

Some say it’s b/c mass effect on static imaging may be much worse dynamically, some say repetitive microtrauma, & some say micro-ischemia from compression of perforators Image
Read 16 tweets
May 2
1/Do radiologists sound like they are speaking a different language when they talk about MRI?

T1 shortening what? T2 prolongation who?

Here’s a translation w/an introductory thread to MRI. Image
2/Let’s start w/T1—it is #1 after all! T1 is for anatomy

Since it’s anatomic, brain structures will reflect the same color as real life

So gray matter is gray on T1 & white matter is white on T1

So if you see an image where gray is gray & white is white—you know it’s a T1 Image
3/T1 is also for contrast

Contrast material helps us to see masses

Contrast can’t get into normal brain & spine bc of the blood brain barrier—but masses don’t have a blood brain barrier, so when you give contrast, masses will take it up & light up, making them easier to see. Image
Read 20 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(