"The energy-intensive nature of CO2 absorption-desorption processes has restricted deployment of #DAC operations. So, catalytic solvent regeneration is a valid solution to tackle this case by accelerating CO2 desorption at lower regeneration temperatures."
🧵 1/8
The new work reports "a one-step synthesis methodology to prepare monodispersed #carbon nanospheres (MCSs) using trisodium citrate as a structure-directing agent with acidic sites." #DirectAirCapture 2/8
"The assembly of citrate groups on the surface of MCSs enables consistent spherical growth morphology, reduces agglomeration & enhances H2O dispersibility. The functionalization-assisted synthesis produces uniform hydrophilic nanospheres of 100–600nm range." #DirectAirCapture 3/8
"This work also demonstrates that the prepared MCSs can be further functionalized with strong Brønsted acid sites, providing high proton donation ability." #DirectAirCapture 4/8
Furthermore, "the materials can be effectively used in a wide range of amino acid solutions to substantially accelerate CO2 #desorption (25.6% for potassium glycinate and 41.1% for potassium lysinate) in the #DirectAirCapture process." 6/8
"Considering the facile synthesis of MCS-SO3H and their superior catalytic efficiency, these findings are expected to pave a new path for energy-efficient #DirectAirCapture."
🚨What if we bet too much on future carbon removal tech and it doesn’t deliver?
New study shows that over-relying on #CDR like DACCS & BECCS could let fossil fuel emissions continue longer, delay action, and raise costs later.
Key findings🧵1/9
2/ Many net-zero plans assume large-scale CDR. But techs like direct air capture (DACCS) & bioenergy with CCS (BECCS) are tiny today and scaling them is risky due to land, energy & cost barriers.
3/ Researchers ran 6 scenarios using GCAM:
-Stage 1: Plan for high or low CDR now
-Stage 2: Learn mid-century whether high CDR is actually feasible or not, and then adjust policy or not
They tracked emissions, energy shifts, costs & who bears the burden.
This episode dives into a radical proposal: using a buried nuclear explosion on the seafloor to break up basalt & speed up carbon removal via Enhanced Rock Weathering. The goal? Sequester 30 years of global CO2.
2/12
This episode unpacks a preprint by Hosea Olayiwola Patrick drawing lessons from COVID-19 for solar geoengineering.
📰 Here's your round-up of top #CarbonDioxideRemoval News / Developments from this week (09 June - 15 June 2025):
🔗:
🧵0/17
@InSoilClimate secured its largest funding to date through a €100 million agreement with Key Carbon, accelerating regenerative agriculture and carbon credit generation across Europe.
Canada Nickel partnered with NetCarb to scale mineral carbon sequestration at Crawford. NetCarb's tech could boost CO₂ uptake 10‑fold to 10–15 Mt/year, vs 1.5 Mt via Canada Nickel's proprietary IPT Carbonation.
🚨A new study [preprint] shows that injecting sulfur at 50km could make #SolarGeoengineering much safer.
It cools the planet more effectively, speeds ozone recovery & avoids stratospheric disruptions. This could be done using a fleet of clean, reusable H2 rockets.
DETAILS🧵1/10
2/ SAI involves spraying SO₂ into stratosphere, where it forms aerosols that reflect sunlight—cooling Earth. It mimics volcanic eruptions like Mt. Pinatubo (1991), which temporarily cooled the planet.
But current “SAI models” inject SO2 at a rate of 10 Tg/yr at ~25km altitude.
3/ But Injecting at 25 km creates problems
Aerosols accumulate in the tropical lower stratosphere, causing up to 6°C warming in that layer.
This disturbs jet streams, increases stratospheric water vapor, and delays the ozone layer’s recovery—by 25–55 years in Antarctica.