Jeff Gortmaker Profile picture
Apr 19, 2023 16 tweets 12 min read Read on X
Hey #econtwitter, I'm excited to share a new WP with @conlon_chris about micro data (e.g. consumer surveys) in BLP estimation. Alongside it, we finally released PyBLP version 1.0!

Paper: jeffgortmaker.com/files/micro.pdf
Code: github.com/jeffgortmaker/…
Docs: pyblp.readthedocs.io/en/stable/

1/16 ImageImage
Since releasing version 0.1 with our 2020 paper (onlinelibrary.wiley.com/doi/10.1111/17…), the most common request has been micro moments.

So we dug through published/recent WPs to see how "micro BLP" has been used in practice. Turns out it's been used a lot. Let us know who we missed!

2/16 Image
Most papers seem to incorporate micro data in problem-specific ways with different notation. This makes it challenging to evaluate different estimators and replicate results.

So we developed a standardized econometric framework that covers most existing cases (and more).

3/16 Image
In our framework, "micro data" are generated by independent surveys of selected consumers (choice-based, stratified, etc), conditional on product-level "aggregate data."

Researchers either have full data (demographics, choices) or summary stats (means, correlations, etc).

4/16 ImageImage
Compatibility, interpretability, confidentiality, and cost are common reasons for using summary stats.

For those with/willing to use full survey results, we derive "optimal micro moments" that match scores. They're easy to compute in a second step with optimal weights/IVs.

5/16 ImageImage
We use Monte Carlo experiments to highlight some practical advice.

Micro data provide *within-market* variation, which is particularly useful with limited *cross-market* variation in demographics and choice sets. See @steventberry and @PhilHaile's nber.org/papers/w27704.

6/16 ImageImage
What does "limited cross-market variation" mean in practice?

Linear regression can provide some intuition.

We recommend inspecting 2SLS regressors from Salanie and Wolak's (2022) FRAC approximation to the BLP model. Also see @jamesbrandecon's github.com/jamesbrandecon….

7/16 Image
Which micro summary stats are most informative?

Those that look like the score!

We highlight a few standard micro moments: characteristic-demographic covariances for estimating how preferences vary with demographics, and second choices for unobserved preferences.

8/16 ImageImageImageImage
When is it a bad idea to use all info in a micro dataset?

One case is when aggregate and micro data are incompatible.

We give an example where income is measured differently across datasets. Carefully-chosen summary stats use compatible info and discard incompatible info.

9/16 Image
When should micro moments be pooled across markets?

We recommend pooling markets that seem observably similar.

In general, there's a bias-variance trade-off. Market-specific moments may contain more info, but many moments can bias GMM (e.g. Han and Phillips, 2005).

10/16 Image
What about numerical integration?

We mostly point to our earlier paper, but highlight one pitfall.

Quadrature is great, but it performs poorly for micro moments with demographic discontinuities. We recommend more continuous micro moments or Monte Carlo methods instead.

11/16 Image
Will micro BLP work with different data sizes?

Yes! As long as aggregate and micro data are not too small.

We consider three important asymptotic thought experiments and find that micro BLP's desirable asymptotic properties seem to translate to finite samples.

12/16 ImageImage
How does this work in practice?

Our empirical example uses Nielsen scanner and household survey data.

We estimate pre-2017 soda demand in Seattle, predict effects of a 2018 tax, and compare with what happened. Micro data lets us reject big differences by demographics.

13/16 ImageImage
A standard concern is that arbitrary assumptions -> large market size -> large logit outside substitution.

So we show how to estimate outside diversion with a quick/cheap second choice survey. We hope these types of surveys will become more common in empirical IO.

14/16 ImageImage
For even more, come see me, Paul Grieco, @conlon_chris, and @ChrisAdamsEcon talk about demand estimation at @IIOC_IO this Sunday!

Paul's paper with @charliemurry @PinkseJoris @StephanSagl (personal.psu.edu/plg15/files/pr…) is a must-read for those interested in micro BLP.

15/16 Image
For those looking to use micro moments with PyBLP, a good place to start is our tutorial estimating Petrin's (2002) model in < 100 lines of code. Let us know what you think!

Tutorial: pyblp.readthedocs.io/en/stable/_not…
Issue tracker: github.com/jeffgortmaker/…

16/16 Image

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Jeff Gortmaker

Jeff Gortmaker Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @jeff_gortmaker

Nov 18
Hey #EconTwitter, I'm on the job market with a paper about open source software. OSS is a global public good, widely used and provided by the private sector, but the target of recent industrial policy.

Paper:

1/ jeffgortmaker.com/files/Open_Sou…Image
2/ I build an empirical model to quantify the global effects of China expanding its OSS policies (and a US response).

Before the model, what's going on in China? Most OSS collaboration happens on GitHub. Less-known is its Chinese counterpart, Gitee, state-backed since 2020. Image
3/ Along with subsidies, China appears willing to restrict OSS contributions.

I use censorship watchdog data to show that in 2021, China made it harder for domestic developers to access GitHub directly. Image
Read 18 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(