#AcademicTwitter#Physics I appreciate the likes, but please do share as well. Despite several publications on the subject (in PLB, PRD, CQG and EPJC), I struggle to get the academic community know about this. And there is so much to do! We need help on this topic! 1/N
Whether or not the theory is correct, it really is an interesting new direction to explore IMO! 👉 this is a new theory of relativity that is more economical than general relativity coupled to matter fields because it requires only two universal (dimensionful) constants 2/N
to be defined, while it has all the same ingredients otherwise. It has general relativity and standard QFT as a (single generic) limit, while it predicts (eventually observable) new things at really high densities (potentially observable next to white dwarfs, in neutron stars 3/N
or at even higher densities), without any theoretical parameter! And it does not have a Planck length or a Planck time, while those elementary "spacetime scales" are where lie all the real issues of quantum gravity. The theory is so simple, and yet it opens up so many 4/N
questions. So please, share the information, and also please: invite me to present the topic in a remote talk. I would be more than happy to share what I know and what I don't know about this theory, and to answer to any question/comment people may have. There is so much to do!🙏
• • •
Missing some Tweet in this thread? You can try to
force a refresh
What's the deal, you may ask? Remember the "3 key steps to overthrowing a scientific theory" laid down by @StartsWithABang ? bigthink.com/starts-with-a-… Step1: "Your new theory must reproduce all the successes of the leading theory" 1/N
Well, this theory recovers both general relativity and standard quantum field theory for a universe like ours. (That means: the theory naturally converges toward GR and standard QFT during the evolution of the universe provided that it is mostly made of dust and radiation). 2/N
(If this sentence does not make any sense with your current understanding of physics, that's normal! It's a novel direction to explore in theoretical physics, with new things to be digested!) 2b/N
Petit fil pour expliquer ma dernière révélation: non-seulement la relativité intriquée (RI) semble être une bonne théorie de la gravitation, mais elle implique aussi un lien fondamental entre la gravitation et la physique quantique (rien que ça! 🤯) 1/N arxiv.org/abs/2206.03824
First, let me recall that, unlike in GR, there is no coupling constant between matter and curvature in the action of ER. And that the only constant that appears in the action does not impact the classical dynamics of the theory. So it must be a quantum constant. 2/N
Indeed, in the path integral formulation of a theory, the action enters in the quantum phase for each path. Hence, this constant must have an effect on the weighting of the phase for each possible path in the path integral formulation of the theory. 3/N
Aujourd'hui, je vais tenter d'expliquer pourquoi je pense que la relativité intriquée pourrait être conceptuellement supérieure à la relativité générale, d'après les standards d'Einstein, lui-même. 1/N
Tout d'abord, l'une des grande force de la relativité intriquée est que, du point de vue axiomatique, elle n'est pas moins "économe" (au sens d’Ockham) que la relativité générale. Leur seule différence provient de la manière dont la matière "couple" à l'espace-temps. 2/N
(Cela tranche avec la multitude de théories alternatives à la relativité générale qui ajoutent en général de nombreux nouveaux ingrédients, tels que de nouveaux champs, des masses aux anciens champs, ou des dimensions supplémentaires... 2b/N)
Dans le thread qui suit, je vais tenter d'expliquer pourquoi la relativité générale d'Einstein est une limite particulière de la relativité intriquée. 1/N
Il faut commencer par écrire la quantité qui définit la relativité générale (RG): son Lagrangien. Cette équation de la RG fait le lien entre la courbure de l'espace-temps (R), et la matière dans cet espace-temps (Lm), avec une constant de proportionnalité (kappa). 2/N
Kappa, aussi appelée "constante de couplage", nous dit en somme à quel point une certaine quantité de matière va courber l'espace-temps. Cette constante est notamment proportionnelle à la constante de Newton (G). 3/N