🚨NEW STUDY🚨
"Six models are used in a recent study to analyze the climatic, environmental & socio-economic consequences of #overshooting a C budget consistent with the 1.5°C temp target along the cause-effect chain from emissions & #CarbonRemovals to climate risks & impact."
🧵
"Global climatic indicators such as CO2-concentration and mean temperature closely follow the #CarbonBudget#overshoot with mid-century peaks of 50 ppmv and 0.35°C, respectively."
2/10
Findings of this study highlight that "investigating #overshoot scenarios requires temporally and spatially differentiated analysis of climate, environmental and socioeconomic systems."
3/10
Researchers find "persistent and spatially heterogeneous differences in the distribution of #carbon across various pools, ocean heat content, sea-level rise as well as #economic damages."
4/10
"Moreover, it was find in the study that key impacts, including degradation of marine ecosystem, heat wave exposure & economic damages, are more severe in equatorial areas than in higher latitudes, although absolute #temperature changes are stronger in higher latitudes."
5/10
"The detrimental effects of a 1.5 °C warming and the additional effects due to #overshoots are strongest in non-OECD countries (Organization for Economic Cooperation and Development)."
6/10
"Constraining the overshoot inflates CO2 prices, thus shifting #CarbonRemoval towards early #afforestation while reducing the total cumulative deployment only slightly, while mitigation costs increase sharply in #DevelopingCountries."
7/10
"Thus, scenarios with C budget overshoots can reverse global mean temp increase but imply more persistent & geographically heterogeneous impacts. Overall, the decision about #overshooting implies more severe trade-offs btw #mitigation & impacts in #DevelopingCountries."
8/10
Read the study led by @NB_pik entitled: "Exploring risks and benefits of overshooting a 1.5 °C carbon budget over space and time" here ⬇️ iopscience.iop.org/article/10.108…
🚨New research out on US public perceptions of #SolarGeoengineering:
More Americans oppose SRM research than support it, and 1 in 5 believe government-led atmospheric modification is already underway.
DETAILS🧵1/11
2/ Using 64 interviews, 10 focus groups, and a survey of 3,076 Americans, the study found strong initial rejection of solar radiation modification (#SRM) as a research priority.
Skepticism, fear of unintended consequences, and concern over “playing God” were dominant themes.
3/ Only 32.6% supported further SRM research. A notable 43.7% opposed it. For comparison, support was ~80% in similar studies from a decade ago. Enthusiastic support is now virtually nonexistent in qualitative responses.
📰 Here's your round-up of top #CarbonDioxideRemoval News / Developments from this week (28 July - 03 August 2025):
🔗:
🧵0/21
Germany’s 2026 draft budget allocated €111 million for negative emissions in 2026 and a further €320 million in subsequent years. A new federal department has also been set up to focus on carbon removal.
🚨How does #SolarGeoengineering affect air pollution & public health?
New study using a cutting-edge Earth system model shows that #SAI has only modest effects on PM₂.₅ & ozone-related mortality & these impacts are mostly due to climate shifts, not aerosol deposition.🧵1/8
2/ Using CESM2-WACCM6 simulations across three scenarios (SSP2-4.5 baseline, ARISE-SAI-1.5, ARISE-SAI-1.0), the study quantifies global mortality attributable to ozone (O₃) & fine particulate matter (PM₂.₅) under future SAI deployment targeting 1.5°C and 1.0°C warming levels.
3/ Findings:
In the ARISE-SAI-1.5 scenario, maintaining global mean temp at 1.5°C above pre-industrial levels via SAI results in:
- 1.26% reduction in ozone-related mortality
- 0.86% increase in PM₂.₅-related mortality during 2060–2069, relative to SSP2-4.5.
📰 Here's your round-up of top #CarbonDioxideRemoval News / Developments from this week (21-27 July 2025):
🔗:
🧵0/22
Chestnut Carbon secured up to $210M in non-recourse financing, led by J.P. Morgan for its afforestation project, marking a first-of-its-kind deal in the US carbon removal space.
🚨Scientists have discovered a common soil bacterium, Bacillus megaterium, that can rapidly remove CO2 from the atmosphere by transforming it into solid limestone (calcium carbonate) within 24 hours, without creating toxic byproducts.
#CDR #CarbonMineralization
DETAILS🧵1/8
2/ Microbially induced calcite precipitation (MICP) is a technique where microbes precipitate CaCO₃, often used in eco-friendly building materials.
Most MICP uses urease to break down urea, which produces ammonium, a problematic byproduct.
3/ Bacillus megaterium is unique in a sense, it contains both urease and carbonic anhydrase (CA) enzymes. The latter allows it to fix CO₂ directly without needing urea.
But which pathway dominates? This study investigated that.