🚨NEW STUDY🚨
"Six models are used in a recent study to analyze the climatic, environmental & socio-economic consequences of #overshooting a C budget consistent with the 1.5°C temp target along the cause-effect chain from emissions & #CarbonRemovals to climate risks & impact."
🧵
"Global climatic indicators such as CO2-concentration and mean temperature closely follow the #CarbonBudget#overshoot with mid-century peaks of 50 ppmv and 0.35°C, respectively."
2/10
Findings of this study highlight that "investigating #overshoot scenarios requires temporally and spatially differentiated analysis of climate, environmental and socioeconomic systems."
3/10
Researchers find "persistent and spatially heterogeneous differences in the distribution of #carbon across various pools, ocean heat content, sea-level rise as well as #economic damages."
4/10
"Moreover, it was find in the study that key impacts, including degradation of marine ecosystem, heat wave exposure & economic damages, are more severe in equatorial areas than in higher latitudes, although absolute #temperature changes are stronger in higher latitudes."
5/10
"The detrimental effects of a 1.5 °C warming and the additional effects due to #overshoots are strongest in non-OECD countries (Organization for Economic Cooperation and Development)."
6/10
"Constraining the overshoot inflates CO2 prices, thus shifting #CarbonRemoval towards early #afforestation while reducing the total cumulative deployment only slightly, while mitigation costs increase sharply in #DevelopingCountries."
7/10
"Thus, scenarios with C budget overshoots can reverse global mean temp increase but imply more persistent & geographically heterogeneous impacts. Overall, the decision about #overshooting implies more severe trade-offs btw #mitigation & impacts in #DevelopingCountries."
8/10
Read the study led by @NB_pik entitled: "Exploring risks and benefits of overshooting a 1.5 °C carbon budget over space and time" here ⬇️ iopscience.iop.org/article/10.108…
🚨'Rock candy' technique offers simpler, less costly way to capture C directly from air
U of Toronto engineers have developed a cheap, passive, string-based #DAC system that crystallizes CO₂ like “rock candy,” potentially cutting capital costs by up to 40%.
How it works🧵1/11
Direct air capture has existed for decades, but it’s expensive. Giant fans, complex chemical plants, and energy-intensive regeneration steps drive up costs. That’s the main criticism of today’s DAC industry.
U of Toronto researchers tackled the problem with a simple question:
What if we could let nature do most of the work?
Their answer: evaporative carbonate crystallization, a passive, wind-powered approach.
🚨🗞️Monthly Solar Geoengineering Updates (November Edition)
From the U.S. stratospheric-cooling patent to Global South funding, cautious UK–EU stances, tipping-point modeling & a surge in chemtrail chatter, #SRM captured global attention.
Top 10 SRM Highlights (Nov 2025)🧵1/6:
➡️@MakeSunsets secures its first US patent for stratospheric cooling tech
➡️Climate scientists remain skeptical of SRM, favor research over deployment, per @SZ (Garman newspaper) survey
➡️Royal Society sees SRM’s potential but stresses it can't solve climate change alone
🧵2/
➡️London Protocol reiterates precaution on marine geoengineering deployment
➡️UK reiterates it is “not in favor” of SRM deployment but open to debating regulation
➡️Studies warn SAI may cut protein in staple crops & destabilize yields for coffee, cacao & wine
🚨A new modeling study finds Stratospheric Aerosol Injection (#SAI) could lower risks to many of Earth’s #TippingPoints, but not all.
High-latitude deployment best protects ice sheets & permafrost, while low-latitude deployment favors rainforests & coral reefs.
DETAILS🧵1/14
2/ Tipping elements are highly sensitive to warming.
This study analyzes how different SAI designs (equatorial, mid-latitude, high-latitude & multi-objective strategy) influence the drivers of these tipping systems under SSP2-4.5.
3/ Across most tipping elements, SAI decreases risk relative to continued warming, but magnitude & direction of response are strongly pattern-dependent.
CO₂-driven warming & SAI-driven cooling aren't climatic mirror images - SAI can over- or under-compensate regional changes
🚨New study reveals a major hidden C sink in the deep ocean: ancient talus breccias - piles of broken basalt formed along seafloor faults - can trap & store CO₂ for tens of millions of years, potentially offsetting a significant share of mid-ocean ridge emissions.
DETAILS🧵1/10
2/ Researchers made the discovery while drilling 60-million-year-old seafloor in the South Atlantic.
They found talus breccias containing ~7.5 wt% CO₂ - the highest carbon content ever measured in upper ocean crust, up to *40 times richer than previously sampled basalts.
3/ Why so much C?
These breccias form when steep faults at slow-spreading ridges collapse, creating piles of fractured rock with high natural porosity (~19%).
Over millions of yrs, cold seawater circulates thru rubble & precipitates carbonate minerals, trapping dissolved CO₂
🚨Soil food webs boost carbon retention in farmlands
A new study reveals that simply returning crop residues to fields can supercharge soil food webs, enabling microbes, nematodes & fungi to lock significantly more photosynthetic C into farmland soils.
Details🧵1/8 #CarbonSink
2/ Researchers from the Institute of Applied Ecology, Chinese Academy of Sciences (CAS), used field trials and ¹³C isotope tracing to map how carbon fixed by crops travels into soil and through the soil food web.
3/ FINDINGS:
Returning crop residues (stover) emerged as a key driver:
It increased particulate organic carbon (POC) by ~30.96% & mineral-associated organic carbon (MAOC) by ~11.39% compared with plots where stover was removed.
🚨New research shows how integrating Direct Air Capture (#DAC) with urea production - paired with CO₂ pricing can slash emissions, reach cost parity with fossil-based urea by 2050 & reshape global fertiliser markets through policies like the EU #CBAM.
DETAILS🧵1/9 #CDR
2/ What DAC-urea is?
It's urea fertilizer made with CO₂ pulled directly from the air instead of CO₂ from fossil fuels.
Air-captured CO₂ + green ammonia → urea.
Same fertilizer, but far lower climate impact.
3/Study presents a framework combining process modelling, prospective LCA & TEA to compare DAC-urea with conventional fossil-based urea today & under 2050 climate scenarios, including a cross-country assessment of Denmark’s clean electricity system & Egypt’s more C-intensive grid