"One of the planet’s most vital #CarbonSinks i.e. SOUTHERN OCEAN (SO) (absorbs ~40% of C) is revealing its secrets as tiny organisms in the SO play an outsized role in moderating Earth’s #climate."
Details from the recent research are discussed in a🧵⬇️ 1/8
"Based on 107 independent observations of the seasonal cycle from 63 #biogeochemical profiling floats, new study conducted by scientists from #NOAA & University of Hawai'i provide the basin-scale estimate of distinct biogenic #CarbonPool production at Southern Ocean." 2/8
Researchers find "significant meridional variability with enhanced #ParticulateOrganicCarbon production in the subantarctic & polar Antarctic sectors & enhanced #DissolvedOrganicCarbon production in the subtropical & sea-ice-dominated sectors." 3/8
"#ParticulateInorganicCarbon production peaks between 47°S and 57°S near the “great calcite belt.” Relative to an abiotic Southern Ocean (SO), organic C production enhances CO2 uptake by 2.80 ± 0.28 Pg C y−1, while PIC production reduces CO2 uptake by 0.27 ± 0.21 Pg C y−1." 4/8
"Without organic C production, the SO would be a CO2 source to the atm. The findings of this study emphasize the importance of #DOC & #PIC production, in addition to the well-recognized role of #POC production, in shaping the influence of C export on air–sea CO2 exchange." 5/8
IN SIMPLE WORDS ⬇️
🌊 "Researchers discovered that if the amount of #carbon produced by tiny organisms in Southern Ocean decreased by 30%, the Southern Ocean would release carbon dioxide instead of #absorbing it, which could worsen the #GreenhouseEffect on our planet." 6/8
Read the open-access paper entitled: "Biogenic carbon pool production maintains the Southern Ocean carbon sink" here ⬇️ pnas.org/doi/10.1073/pn…
🚨What if we bet too much on future carbon removal tech and it doesn’t deliver?
New study shows that over-relying on #CDR like DACCS & BECCS could let fossil fuel emissions continue longer, delay action, and raise costs later.
Key findings🧵1/9
2/ Many net-zero plans assume large-scale CDR. But techs like direct air capture (DACCS) & bioenergy with CCS (BECCS) are tiny today and scaling them is risky due to land, energy & cost barriers.
3/ Researchers ran 6 scenarios using GCAM:
-Stage 1: Plan for high or low CDR now
-Stage 2: Learn mid-century whether high CDR is actually feasible or not, and then adjust policy or not
They tracked emissions, energy shifts, costs & who bears the burden.
This episode dives into a radical proposal: using a buried nuclear explosion on the seafloor to break up basalt & speed up carbon removal via Enhanced Rock Weathering. The goal? Sequester 30 years of global CO2.
2/12
This episode unpacks a preprint by Hosea Olayiwola Patrick drawing lessons from COVID-19 for solar geoengineering.
📰 Here's your round-up of top #CarbonDioxideRemoval News / Developments from this week (09 June - 15 June 2025):
🔗:
🧵0/17
@InSoilClimate secured its largest funding to date through a €100 million agreement with Key Carbon, accelerating regenerative agriculture and carbon credit generation across Europe.
Canada Nickel partnered with NetCarb to scale mineral carbon sequestration at Crawford. NetCarb's tech could boost CO₂ uptake 10‑fold to 10–15 Mt/year, vs 1.5 Mt via Canada Nickel's proprietary IPT Carbonation.
🚨A new study [preprint] shows that injecting sulfur at 50km could make #SolarGeoengineering much safer.
It cools the planet more effectively, speeds ozone recovery & avoids stratospheric disruptions. This could be done using a fleet of clean, reusable H2 rockets.
DETAILS🧵1/10
2/ SAI involves spraying SO₂ into stratosphere, where it forms aerosols that reflect sunlight—cooling Earth. It mimics volcanic eruptions like Mt. Pinatubo (1991), which temporarily cooled the planet.
But current “SAI models” inject SO2 at a rate of 10 Tg/yr at ~25km altitude.
3/ But Injecting at 25 km creates problems
Aerosols accumulate in the tropical lower stratosphere, causing up to 6°C warming in that layer.
This disturbs jet streams, increases stratospheric water vapor, and delays the ozone layer’s recovery—by 25–55 years in Antarctica.