Recent study present an analysis of “the gap between the CO2 storage required to meet net zero targets and the slow maturation of regional storage resources.”
Researchers estimate that “European storage rates need to boost 30-100x by 2030 to meet #NetZero by 2050. 🇨🇳 & North America face a similar challenge. The slow global progress of #CarbonStorage undermines the latest IPCC, IEA & EU transition pathways to net zero by 2050.”
2/12
Here, scientists of this study investigate “if sufficient #storage can be developed in time. China 🇨🇳 (30%), (15%) and Europe 🇪🇺(10%) dominate global #emissions.”
In this study, “Europe was chosen as a data-rich exemplar.”
4/12
“Assuming #NetZero in 2050, researchers back-calculate the #storage required under 3️⃣ scenarios of low, medium, and high #CCS demand.”
5/12
“Even the low demand scenario requires 0.2 Gt of #storage by 2030, increasing to 1.3 Gt by 2050. The moderate & high demand scenarios require 5-8 Gt by 2050. The current #CarbonStorage rate in #Europe is 0.001 Gt/yr.”
6/12
So, “there is a huge gap btw policy demand & #storage supply. Adaptation of existing #hydrocarbon tech has the potential to close this gap, with CCS for the entire EU requiring less than half the historic rate of HC exploration & development in UK North Sea from 1980-2010.”
7/12
“Counter to expectation, #storage cannot be delivered by exponential growth but requires an early & sustained investment of 30-50 boreholes per year starting before 2030 to build sufficient capacity,” researchers affirmed.
8/12
“A 5-year lead-time to identify & mature prospects needs policy intervention before 2025. Continued policy deferral will lock Europe into a low CCS pathway that restricts the contribution of #NETs at a potential cost of €100 billion for every gigatonne delayed beyond 2050.”
9/12
According to this research, “North America & China require similar policy intervention to close the gap on #CarbonStorage and #NetZero.”
10/12
To get more information on the research entitled: "Mind the gap: will slow progress on carbon dioxide storage undermine net zero by 2050?" (Preprint) visit ⬇️
📖📝➡️eartharxiv.org/repository/vie…
From U.S. withdrawal from global climate bodies & anti-geoengineering bills, to SAI uncertainty tool, Arctic field trials & funding calls, SRM stayed at the nexus of sci & geopolitics.
Top 10 SRM Highlights (Jan'26)🧵1/11
1️⃣ 𝗨.𝗦. 𝗲𝘅𝗶𝘁𝘀 𝗨𝗡𝗙𝗖𝗖𝗖 & 𝗜𝗣𝗖𝗖 - Experts warn withdrawal could weaken SRM governance, deepen geopolitical mistrust, and accelerate fragmented or unilateral approaches.
2/11
2️⃣ 𝗔𝗻𝘁𝗶-𝗴𝗲𝗼𝗲𝗻𝗴𝗶𝗻𝗲𝗲𝗿𝗶𝗻𝗴 𝗯𝗶𝗹𝗹𝘀 𝗶𝗻 𝘁𝗵𝗲 𝗨.𝗦. - New Arizona and Iowa state proposals target geoengineering, despite limited evidence and no active SRM programs.
🚨Climate pathways to 1.5°C increasingly depend on land-intensive carbon dioxide removal (#CDR) like forestation and BECCS.
But new research shows these climate solutions could place major pressure on #biodiversity if deployed without safeguards.
Details🧵1/11
2/ Using five integrated assessment models, the study examines where large-scale CDR is projected to occur & and how often it overlaps with biodiversity hotspots and climate refugia, the places most critical for species survival.
3/ The analysis focuses on a moderate but realistic deployment level of 6 GtCO₂ per year:
• 3 GtCO₂/yr from forestation
• 3 GtCO₂/yr from BECCS
Even at this level, land pressures are already significant.
🚨The Politics of Geoengineering (book) is out, offering 1st comprehensive social science view of #geoengineering.
It examines political, legal, economic & societal dimensions of CDR & SRM, from Africa to the Asia-Pacific, amid urgent governance & ethical debates
Chapters🧵1/15
2/ Chapter 01: Geoengineering has shifted from theory to contested policy, with technology outpacing governance. The analysis highlights political, legal, economic, and justice dimensions and calls for urgent global oversight.
3/ Chapter 2 examines Carbon Dioxide Removal (CDR) as geoengineering, analyzing CO2 extraction, storage, and conversion, with SWOT insights on techniques and implications for sustainable climate action.
🚨Is carbon dioxide removal (#CDR) in the Arctic really feasible?
A new peer-reviewed study systematically assessed proposed Arctic CDR pathways and finds that feasibility is far more limited than often assumed.
DETAILS🧵1/14
2/ As Arctic warms rapidly (4x) & attracts attention for climate interventions, can it host CDR at meaningful scale?
To answer this, authors conducted a comparative assessment of major CDR approaches proposed for Arctic regions, spanning both nature-based & engineered methods.
3/ The analysis draws on existing empirical studies, pilot projects, and modeling literature, evaluating each CDR pathway against biophysical constraints, technical readiness, environmental risks, and governance requirements.
🚨2025 Year in Review: Solar Geoengineering Edition🚨
As we enter 2026, we’re excited to share our yearly summary for #SRM: "Solar Geoengineering in 2025: Rays of Hope, Clouds of Doubt."
Here’s what we cover in this comprehensive review:🧵1/11
2/ 𝐖𝐡𝐚𝐭’𝐬 𝐢𝐧𝐜𝐥𝐮𝐝𝐞𝐝 𝐢𝐧 𝐨𝐮𝐫 𝟐𝟎𝟐5 𝐫𝐞𝐯𝐢𝐞𝐰?
1️⃣ Rising Temp & Escalating Climate Impacts
2️⃣SRM Funding Announcements
3️⃣Top SRM Stories
4️⃣Restrictions & Bans on SRM
5️⃣Essential SRM Reads
6️⃣SRM in Media
7️⃣Research Highlights
8️⃣Our Work Across Geoengineering
3/ 2025 was the third-warmest yr on record. @CopernicusEU shows the last 11 yrs were the warmest ever, with the global average temp in yrs 2023-25 exceeding 1.5 °C. Top climate disasters caused $120B+ in losses, intensifying debates over mitigation, CDR & SRM.