Recent study present an analysis of “the gap between the CO2 storage required to meet net zero targets and the slow maturation of regional storage resources.”
Researchers estimate that “European storage rates need to boost 30-100x by 2030 to meet #NetZero by 2050. 🇨🇳 & North America face a similar challenge. The slow global progress of #CarbonStorage undermines the latest IPCC, IEA & EU transition pathways to net zero by 2050.”
2/12
Here, scientists of this study investigate “if sufficient #storage can be developed in time. China 🇨🇳 (30%), (15%) and Europe 🇪🇺(10%) dominate global #emissions.”
In this study, “Europe was chosen as a data-rich exemplar.”
4/12
“Assuming #NetZero in 2050, researchers back-calculate the #storage required under 3️⃣ scenarios of low, medium, and high #CCS demand.”
5/12
“Even the low demand scenario requires 0.2 Gt of #storage by 2030, increasing to 1.3 Gt by 2050. The moderate & high demand scenarios require 5-8 Gt by 2050. The current #CarbonStorage rate in #Europe is 0.001 Gt/yr.”
6/12
So, “there is a huge gap btw policy demand & #storage supply. Adaptation of existing #hydrocarbon tech has the potential to close this gap, with CCS for the entire EU requiring less than half the historic rate of HC exploration & development in UK North Sea from 1980-2010.”
7/12
“Counter to expectation, #storage cannot be delivered by exponential growth but requires an early & sustained investment of 30-50 boreholes per year starting before 2030 to build sufficient capacity,” researchers affirmed.
8/12
“A 5-year lead-time to identify & mature prospects needs policy intervention before 2025. Continued policy deferral will lock Europe into a low CCS pathway that restricts the contribution of #NETs at a potential cost of €100 billion for every gigatonne delayed beyond 2050.”
9/12
According to this research, “North America & China require similar policy intervention to close the gap on #CarbonStorage and #NetZero.”
10/12
To get more information on the research entitled: "Mind the gap: will slow progress on carbon dioxide storage undermine net zero by 2050?" (Preprint) visit ⬇️
📖📝➡️eartharxiv.org/repository/vie…
🚨Researchers at the KAIST and the @MIT have developed a new fiber-based material that can capture CO2 directly from the air using only small amounts of electricity, potentially lowering the barriers to large-scale deployment of direct air capture (#DAC) technology.
DETAILS🧵1/8
2/ DAC systems, which remove CO2 directly from ambient air, have long been hindered by their high energy requirements.
With atm CO₂ concentrations at less than 400ppm, vast volumes of air must be processed, typically requiring large amounts of heat.
3/ The joint team, led by Professor Ko Dong-yeon of KAIST & Professor T. Alan Hatton of MIT, overcame this limitation by designing an electrically conductive fiber adsorbent (ethylenediamine EDA-Y zeolite/cellulose acetate (CA) fiber) that heats itself through Joule heating.
🚨In a new study published in @OneEarth_CP, researchers reveal that human land activities have stripped away roughly 24% of terrestrial carbon stocks (equivalent to 344 billion metric tons of C), underscoring an urgent need to reframe land-use & climate policy.
Details🧵1/10
2/ Plants + soils store more carbon than the atmosphere + all fossil reserves combined.
But farming, grazing, and forest use have stripped away this natural shield, turning land from a carbon bank into a carbon source.
3/ Researchers call this loss the terrestrial carbon deficit - the gap between what ecosystems could hold (‘potential’) vs. what they actually hold (‘actual’).
A NEW study suggests Stratospheric Aerosol Injection (#SAI) could help prevent the decline of the Atlantic Meridional Overturning Circulation (#AMOC), but only if aerosols are injected in the appropriate latitude & hemisphere.
DETAILS🧵1/12
2/ The AMOC is a key component of Earth’s climate system, transporting heat and nutrients across the Atlantic.
Its decline, already underway, is projected to accelerate under global warming, possibly approaching a tipping point this century.
3/ Using CESM2(WACCM6), Bednarz et al. ran sensitivity experiments with SO₂ injections at latitudes from 45°S to 45°N.
Each scenario injected 12 Tg-SO₂/yr (2035–2069) to test how SAI location affects AMOC stability.
🚨Enhanced Rock Weathering (#ERW) could remove up to 700 Mt CO₂ by 2070 in the UK if quarry production scales 5–10×.
Larger extraction sites boost efficiency but raise major social, logistical & policy challenges.
A new @CommsEarth study models the trade-offs.🧵1/11
2/ ERW involves spreading crushed silicate rocks on croplands to capture CO₂.
While previous studies examined its chemistry & agronomic benefits, this work focuses on the supply chain: can the UK sustainably scale rock extraction to meet net-zero needs?
3/ The authors model deployment from 2025–2070 under 3 supply scenarios:
Low (32 Mt rock/yr), medium (97 Mt rock/yr) & high rock (166 Mt rock/yr) demand with variations in whether expansion relies on active, inactive, or new quarries.