2) Fig. 2: Exaggerated SARS-CoV-2-specific humoral responses and altered circulating immune mediators among participants with LC.
3) Fig. 3: Participants with LC showed limited but selective autoantibodies against the human exoproteome.
4) Fig. 4: Participants with LC demonstrate elevated levels of antibody responses to herpesviruses.
5) Fig. 5: Biochemical factors differentiate participants with LC from the matched controls.
6) DISCUSSION
"Immune phenotyping of PBMC populations revealed that participants with LC had notably higher levels of circulating non-conventional monocytes associated with various chronic inflammatory and autoimmune conditions.
7) Moreover, the number of CD4+ T central memory cells was significantly reduced and the absolute number of exhausted CD4+ T cells was increased."
"We also showed that individuals with LC have elevated antibody responses against non-SARS-CoV-2 viral antigens ...
8) ... particularly EBV antigens. EBV viraemia occurs during acute COVID-19 in hospitalized patients and predicts development of persistent symptoms in the post-acute period"
Thanks for reading 🙏
• • •
Missing some Tweet in this thread? You can try to
force a refresh
What Are the KEY DIFFERENCES That Make SARS-CoV-2 UNIQUE Among RESPIRATORY VIRUSES Like INFLUENZA and RHINOVIRUSES?
▶️ TRANSMISSION MECHANISM :
- **SARS-CoV-2** primarily spreads through aerosols and contact with contaminated surfaces. It has a longer viral shedding period ...
2) ...which can lead to asymptomatic spread.
- **Influenza**: Also spreads via respiratory droplets, but typically has a shorter contagious period and less asymptomatic transmission compared to SARS-CoV-2.
3) - **Rhinoviruses**: Mainly spread through direct contact and respiratory droplets but are often more localized to the upper respiratory tract.
▶️ INFECTIOUS DOSE:
- **SARS-CoV-2**: Can be infectious with a lower viral load, which may contribute to its rapid spread.
SPERM, STRESS, and the NEXT GENERATION:
The Long-Term Anxious Legacy of COVID-19 and potential impact on Millions of Kids
A recent study in Nature reveals that mice infected with SARS-CoV-2 exhibited changes in their sperm that led to increased anxiety levels in their offspring
2) We had already warned several times about the risks of COVID-19 on sperm.
IS SARS-CoV-2 BECOMING "INVISIBLE"? The Hidden Truth Behind the Pandemic
As the world strives to move past the COVID-19 pandemic, a troubling narrative has emerged: the perception that SARS-CoV-2 is becoming "invisible."
2) Governments and communities are eager to return to normalcy, leading to a tendency to downplay the virus's severity. Reports of new infections and long COVID cases have been totally minimized, creating a false sense of security ...
3) ...that the virus is no longer a significant threat. However, this perception is not only a matter of public sentiment. The virus itself has evolved, most notably with the emergence of the Omicron variant. Recent research reveals that Omicron exhibits a remarkable ability ...
2) This research shows that SARS-CoV-2, the virus that causes COVID-19, stops infected cells from dying. Normally, when cells die, it helps stop viruses from spreading. By keeping these cells alive longer, SARS-CoV-2 allows itself to multiply and also helps other viruses ...
3) ... like influenza A, grow more easily.
When someone has both SARS-CoV-2 and influenza A, the two viruses can make a person much sicker. The immune system gets overwhelmed, leading to more inflammation and damage to the lungs.
ENTROPY UNLEASHED:
How Viral Protein Interactions Drive Coronavirus Adaptation in Bats and Humans
Entropy, in a general sense, refers to the level of disorder or randomness in a system. biorxiv.org/content/10.110…
2) When we talk about protein interactions and viral behavior, entropy can be viewed as a measure of how complex and varied these interactions are.
In the context of the study about coronavirus interactions in bat and human cells, here's a simplified breakdown.
3) **Complex Interactions**: The study identifies how proteins from the coronavirus interact with host cells (both bats and humans). These interactions can be highly ordered (low entropy) or more chaotic (high entropy).