Here is one:
If X has the same distribution as X', Y as Y', and Z as Z', do we have 𝔼[X+Y+Z]=𝔼[X'+Y'+Z']?
Note that this is true for only two r.v.'s: if X~X' and Y~Y'
𝔼[X+Y]=𝔼[X'+Y']
whenever 𝔼[X+Y] is defined (regardless of whether 𝔼[X] and 𝔼[Y] are defined). (cf. below from G. Simons (1977)).
Turns out, this fails for 3 r.v.'s (same paper by Simons, and Counterexample 6.1 in Stoyanov's book).

Sometimes 𝔼[X+Y+Z], 𝔼[X'+Y'+Z'] both exist, yet 𝔼[X+Y+Z]≠𝔼[X'+Y'+Z'].

(Again, for 2 r.v.'s the result holds: if 𝔼[X+Y], 𝔼[X'+Y'] both exist, then 𝔼[X+Y]=𝔼[X'+Y'].)
Here is the paper in question, referenced in Stoyanov's book.

X,Y,Z are dependent and defined such that all three are marginally tan(πU/2) for U~Unif[0,1], but X+Y+Z=0. So 𝔼[X+Y+Z]=0.

X',Y',Z' have different dependence structure, but same marginals. 𝔼[X'+Y'+Z']=(4/π) log 2.
Specifically, take U~Unif[0,1], and set

X=Y=tan(πU/2), Z=-2X.
X'=tan(πU/2), Y'=tan(π(1-U)/2), Z'=-2tan(π|2U-1|/2).

"An Unexpected Expectation," indeed. Here is the paper: doi.org/10.1214/aop/11…

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Clément Canonne

Clément Canonne Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @ccanonne_

27 Mar
📊 Answers and discussions for this week's thread on distinguishing biased coins 🪙. Coin: it's like a die 🎲, but with two sides.

So the goal is, given a 🪙, to distinguish b/w it landing Heads w/ probability p or >p+ε, with as few flips as possible.

1/
Here, p and ε are known parameters (inputs), the goal is to be correct with probability at least 99/100 (over the random coin flips). As we will see, 99/100 is sort of arbitrary, any constant in 1/2 < c < 1 would work.

Also, warning: I'm going to give DETAILS.

2/
Let's start with Q1, the "fair" vs. ε-biased coin setting (p=1/2). As more than 66% of you answered, for Q1. the number of coin flips necessary and sufficient is then Θ(1/ε²). Why?

One way to think about it to gain intuition is "signal to noise."

3/
Read 32 tweets
16 Dec 20
Stuff I wish I had known sooner: "Pinsker's inequality is cancelled," a thread. 🧵

If you want to relate total variation (TV) and Kullback-Leibler divergence (KL), then everyone, from textbooks to Google, will point you to Pinsker's inequality: TV(p,q) ≤ √(½ KL(p||q) )

1/
It's warranted: a great inequality, and tight in the regime where KL→0. Now, the issue is that KL is unbounded, while 0≤TV≤1 always, so the bound becomes vacuous when KL > 2. Oops.

2/

*I'm using it with the natural log, by the way, so no pesky log 2 constants.
This is annoying, because in many situations, you would want to bound a TV close to 1: for instance, in hypothesis testing: "how many samples to distinguish between an ε-biased and a fair coin, with probability 1-δ?"

Well, you'd like to start bounding 1-δ ≤ TV ≤ ?.

3/
Read 14 tweets
4 Dec 20
📊 Answers and discussion for yesterday's quiz on sequences (and their names).

Before we go to the first question, again: if you haven't, bookmark oeis.org. It's useful: the solution to some of your problems may be recorded there!

1/
So, the first question... was a trap. All three answers were valid...

I was personally thinking of 203, since that corresponds to the next Bell number (en.wikipedia.org/wiki/Bell_numb…).

But maybe your were thinking of something else? Maybe the number of...

2/
... ascent sequences avoiding the pattern 201 (oeis.org/A202062)? Or the number of set partitions of [n] that avoid 3-crossings (oeis.org/A108304)? Who am I to judge?

(I prefer Bell numbers.)

3/
Read 10 tweets
3 Dec 20
A paper with a broken and ill-defined "solution" to privacy in ML gets a $50k prize?! While said solution was already fully broken at the time of the award—on a challenge chosen by the authors?🤦‍♂️

The presentation slides must have been hella convincing.
Will Carlini et al. get a share of the prize money for breaking the system prior to the award ceremony? arxiv.org/abs/2011.05315
Disclaimer: I am in no way affiliated w/ any of the authors of the attack, nor w/ the authors of the original paper, nor w/ basically anyone involved. I'm just dismayed at the signal sent, & the overall waste—so much good work done elsewhere, and this is what gets the highlight.
Read 5 tweets
3 Dec 20
📊 It's Thursday, time for our weekly (but weakly so) quiz! This week: integers, and remarkable sequences.

See this as an extended ad for the OEIS, if you will. Also, if you don't know the OEIS: go check it out (and come back)! oeis.org

1/
Let's start with a "fun" one. To be unhelpful, let's say as a hint that I'm expanding exp(e^x-1) as a series around 0, and am interested in the coefficients

Q1: Guess what number comes next—maybe this sequence will ring a bell? [There might be a trap]
1, 1, 2, 5, 15, 52, ??

2/
We won't do too many of those "guess what's next" games though, since they are mostly meaningless. But let's mention that, of course, @xkcdComic has a comic about integer sequences, because XKCD is basically Borges' library for the Internet.
xkcd.com/2016/
3/
Read 8 tweets
27 Aug 20
📊 It's Thursday for many, time for this week's quiz! As alluded earlier, we're going to flip coins. Like, a lot.

Today: you have a biased coin which lands heads with some probability p∊(0,1), and you can toss it as many times as you want. You don't know p, though...

1/10
... which is a real shame, since you want to simulate *another* biased coin which lands heads w/ proba exactly f(p), where f: (0,1)→(0,1) is fixed.
(Also, you'd like to do this efficiently, thank you very much.)

Let's start with a simple function: f(p)=1/2.

Q1: Can you?

2/10
OK, so that was the warmup. Let's formalize a bit more what "efficiently" means here. For us, it will mean (1) with a number of coins finite almost surely (no infinite sequence of tosses), and (2) with a finite automaton.

Ha.

A finite automaton.

3/10
Read 10 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Too expensive? Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal Become our Patreon

Thank you for your support!

Follow Us on Twitter!