Ini mimin bahas dari layout aja yahh, buat pembelajaran kita tentang golden ratio kemarin. Dan juga cuma beberapa elemen, engga semua. Minpe yakin lah #SekelasUI engga mungkin bikin kesalahan-kesalahan pemula 😂
Terus juga minpe bukan graphic designer nih, jadi maapkeun kalo editannya acak kadul 🤪
(1) Posisi tulisan dan website
Posisinya belom 1.618 : 1 nih, sama posisi websitenya masih terlalu pinggir dan kegedean
Kalo kita coba sesuain sama golden ratio yah, jadinya ginii. Lebih cakep kann hihihi
(2) Logo UI dan Kampus Merdeka
Masih terlalu ujung dan mepet sama pinggir kalo yang ini
Kalo kita atur, keliatannya jadi lebih rapih dan bersih kann
Dua adjustment ini aja kayaknya udah cukup memperbaiki posternya deh 😂 Coba deh kita bandingin before afternya
Lo lebih suka yang mana? Pake golden ratio atau ga pake golden ratio nih?
Tapi walaupun begitu mimin @univ_indonesia tetep keren kok, semangat terus ya min hihi, salam dari mimin pacmann 😆🤗
• • •
Missing some Tweet in this thread? You can try to
force a refresh
Regresi buat data kategorik?🧐
Introduction to logistic regression
.
.
.
A thread
Ketika kamu mau bikin model ML pake regresi tapi ternyata data kamu berbentuk kategorik, apa yang kamu lakukan?
Yep, pake regresi buat data kategorik! Loh emang bisa? Bisa dong, tapi pastinya bakal beda sama regresi linear biasa, soalnya kita bakal pake yang namanya regresi logistik.
Sudah 7 tahun kerja sebagai Data Scientist, berikut adalah apa yang gue kerjakan dan kenapa gue hanya mau digaji mahal:
1. Hal pertama yang gue kerjakan sebagai data scientist adalah membuat dokumen bisnis proses.
Kenapa dokumen ini dibuat? karena kalau gak ada dokumen ini, gue gak tahu apa aja yang mesti dimodelkan.
Gue harus interview semua department dan menurunkan business process nya. Kebanyakan di perusahaan, terlebih di perusahaan rintisan, dokumen ini gak ada sama sekali.
Gue harus ngobrol sama tim operation, tim sales, tim marketing, tim HR, dll.
Pengalaman gue jadi Data Scientist 7 tahunan ini, permasalahan paling sulit itu bukan data, atau algoritma, bukan juga model accuracy.
Permasalahan paling sulit adalah membuat orang bisnis paham limitasi dari model, memahami fungsi model dan membuat mereka skeptis dengan sehat atas kemampuan model.
Deployment juga tidak susah. Yang susah adalah perubahan prioritas dari manajemen dalam modeling. Model sering dijadikan gimmick oleh perusahaan menjadi "data driven" atau "AI company".
Racik minuman pakai data checckk!🍻🧑🍳
Pemanfaatan data untuk industri fnb
.
.
.
A thread
Trend makanan minuman berubah-ubah mulu yaaa. Dulu mimin inget banget thai tea booming dan dijual dimana manaa. Eehhh terus ga lama muncul bobba yang trendnya barengan sama kopi gula aren gituu. Favorit kamu yang mana nih?
Anywayy, trend ginian tuhh cenderung berubah terus yaa seiring berjalannya waktuu. Kira kira kedepannya minuman apa nih yang bakal trending?
Pakai matematika biar ✨aesthetic✨?
Introduction to golden ratio
.
.
.
A Thread
Pernah ga sii kalian kepikiran make matematika buat art kalian biar ✨aesthetic✨?
Di thread kali ini, mimin mau nunjukin betapa matematika bener-bener deket sama kehidupan manusia, bahkan di hal-hal yang kita engga sadari. Ini juga bisa menjadi suatu “bukti” kalo emang matematika engga bakal bisa lepas dari kehidupan manusia
Ngukur performa model mulu, ngukur performa DS nya kapan?🧑💻🧠
Key Indicator Performance untuk Data Scientist!
.
.
.
A thread
Mimin penasaran dehh, buat temen-temen Data Scientist disini kalau habis ngerjaiin project tuhh bakal dieveluasi gitu ga sii? Eeehh-- bukan performa modelnya, itu mah sudah byasaa~.
Maksud miminn ituu kinerja kalian gitu yang dievaluasii, bukan cuma modelnyaa hehehe.
Pengeluaran perusahaan untuk data scientist team itu pasti gak main-main, jadi para stakeholders mau tau dong apakah ‘investasi’ mereka buat hire data scientist itu paid off well atau engga.