I have a tendency to write unsolicited threads on AFV tech that interests me or comes up in Twitter interactions.
Here is a long overdue index thread of threads for anyone stumbling across my profile and loyal followers alike!
A primer on the critical dimensions of AFV design, the overall dimensions that constrain most other dimensional/volumetric elements of an AFV, and a lot of the inherent capabilities too.
The start of an open-ended (9 parts at the time of writing) series on tracked AFV running gear and mobility. Some interesting nuances that people don't always realise:
A primer on the wonder tech that is Composite Rubber Tracks (CRT). Why any AFV within GVW limits wouldn't mandate it in any new buy or upgrade is madness.
The magnificent but ultimately failed efforts to produce a high-speed amphibious assault vehicle in n the US - the Expeditionary Fighting Vehicle (EFV)
1/ Some data from the US CBO on their AFV programmes, showing the average age of a US Army M1 tank was at time of data collection 8.3 years.
Why is that an interesting fact? A slightly rambling thread:
2/ There was exciteable discussion a few weeks back around age of AFV designs which was largely reductive and a bit misguided by the original author but prompted interesting discussion.
Ultimately a modern tank is just a metal box to be iteratively retrofitted with newer bits.
3/ Thats a slightly reductive statemeent too admittedly, but step changes no longer require complete fresh slate designs as they used to. The modern tank is at the size and weight limits, so its now a case of more efficient packaging inside that space.
Only a day on from IR release to the first big land news – reports via @FTusa284 yesterday that Rheinmetall confirmed Challenger 2 LEP awarded, official details TBC but 148 tanks looks good
A thread on whaqt LEP is, largely taken from my feature on it last month for @JanesINTEL
A Pocket History: LEP, like all UK programmes, has a lengthy backstory but in the contemporary space emerged in 2013 as a pure obsolescence management project, replacing equipment that was no longer manufactured or supported and extending functional life without capability lift
With this modest scope, the UK Ministry of Defence (MoD) issued two GBP23 million (USD31.23 million) assessment phase contracts in December 2016 to BAE Systems and Rheinmetall Landsysteme for the development of digital prototypes.
@MilremR and Marduk Technologies have announced a so-called autonomous counter-UAS system to provide mobile defence against loitering munitions and ISTAR unmanned aircraft 1/
Base platform is Milrem's THeMIS, which is becoming rather popular and being developed into an increasingly vast range of roles across combat, logistics and recce roles. 2/
The CUAS element is the Marduk Shark. This uses optical sensors to identify 'suspicious' flying objects at up to 5km, track and classify, then allow engagement via unspecified soft kill effectors. Hard kill via the addiiton of a directed energy weapon is suggested as an option 3/
NP Aerospace has re-engineered 12 Ridgback & Mastiff platforms for £7m under an Urgent Capability Requirement (UCR) in Mali, Africa, under the Protected Mobility Engineering & Technical Support (PMETS) contract.
Just look at that ground clearance contrasted with regular Mastiff!
Mods include independent suspension (nice clear view here) incorporating ride height control, along with upgraded driveline, steering and braking systems, CTIS and increased diameter tyres.
Just look at that ground clearance contrasted with regular Mastiff!
Whilst only a handful of vehicles, what a cracking story of UK industry providing very responsive big capability lift to existing assets at low cost (bearing in mind includes initial R&D) and very short time - first wave delivered in just over 80 working days and already deployed
Following up on my bar armour thread (bit.ly/3h8nZIV), a shortish primer on explosive Reactive armour (ERA). Other reactive armours (NxRA, NERA, SLERA, Electric) to follow another day. No exciting tropes to quash like bar armour, but perhaps some useful nuance to offer.
Usual disclaimer - this is Twitter, I don’t have much space and so some things are simplified or omitted for simplicity. This is a hugely complex science; I’m just giving a flavour of the considerations inherent in AFV design. With that out the way…
Discovered by Manfred Held in early 70s, ERA is simple and elegant. In basic form, a pair of steel plates sandwich a layer of high explosive. This sandwich is typically housed in a mild steel box to protect against damage and provide standoff from the vehicle hull as appropriate
APS are a step change capability in the world of protection, offering high probability defence against ATGM and RPG threats. However, reliable defence against kinetic energy APFSDS long rod penetrators remains challenging. A thread on why #miltwitter#tanktwitter
A successful APS defeat is the result of a sequence of key events – detection, tracking, intercept. Each of these is uniquely challenging when facing an APFSDS threat compared with an ATGM or RPG.
Detection of the APFSDS launch against the host platform is straightforward - optical sensors can detect the substantial infrared and thermal flare from a tank gun firing, and due to APFSDS being direct fire line of sight weapon it will always be in view of the defended platform