Cover story of today: #Henri has been "hooked" up by an upper-level cutoff low over the eastern US and started to accelerate north, "starburst" outflow pattern heralds a last chance for intensification.
Earlier this morning, the Central Cold Cover (CCC) having trapped #Henri for so long finally came to dissipation. As upper-level SW winds from the cutoff flushed toward #Henri and (briefly) mitigated shear problem, the storm took on new appearance and started to form a real core.
Morning recon into #Henri revealed the inconvenient facts that the storm, shabby and mediocre, barely holds on as a "hurricane" despite more than a day's very deep yet asymmetric convection. NW quadrant was astoundingly weak. But now, things are wrapping up and being compensated.
As baroclinic energy from the east US cutoff injects into the W quadrants of #Henri, blobs of convection are being excited on its weakness side, and that'll help the development of an axisymmetric circulation.
Meanwhile, #Henri is situated over the last resort of warm water - the Gulf Stream. Tonight, after passing the equivalent latitude of DC, SSTs will no longer be favorable. Even the "relatively warm" water become quite shallow to the N and contains nearly zero ocean heat content.
#Henri is looking more like a hurricane than it ever has at the moment with a tiny core and medium-sized eye in formation.
The cloud top temperatures in #Henri are getting warmer compared to last two days, partly because it's also moving into higher latitudes, but since the CCC was gone its circulation was also getting healthier and more symmetric, with a ragged eye emerging on IR.
Earlier recon at sunset showed #Henri's pressure dropped slightly to ~988 hPa, or 5 hPa deepening throughout the day. Wind-wise, it holds on as a marginal Cat.1 hurricane, with slightly improved structure on western side. #Henri has ran out of the warm waters as of tonight.
• • •
Missing some Tweet in this thread? You can try to
force a refresh
The persistent & very cold cloud tops in #Henri is actually a dubious sign and bad news. In fact, #Henri may have been plagued with such pattern and have halted intensification. 1/n
The Dvorak TC analysis technique may refer to such phenomenon as the development of a "Central Cold Cover", or CCC. It's characterized by persistent and enormously large cirrus canopy coverage with no well-defined curved bands or eye appearance.
My personal understanding: CCC is usually linked with large vertical wind shear. Think about a gigantic MCS over the ocean - that's a steadily tilted TC in strong shear, moving slowly over warm waters, with all asymmetric convection locked in space. #Henri is in 20+ kt of shear.
#Henri (learned today that it's not supposed to be pronounced as "Henry) currently still has its outflow blocked by upper-level NE winds. It can be seen from the loop that the low-level cloud curvatures are out to the NW while upper-level circulation center is tilted to the SE…
In sketch terms:
From the GFS forecast, it seems that the poleward outflow channel won't open up for #Henri until Friday PM hours and so is a window for faster intensification.
Update: #Grace seems to be a tad too far north from the shore to replicate Hurricane Karl's case of TC-land interaction… there does not seems to be a vigorous coastal rainband to the south of #Grace at the moment.
Archived content: sketch of how extreme rainfall in Zhengzhou, China was related to (1) moisture transport enhanced by the monsoon gyre, (2) deepening upper-level trough, and (3) leeward inverted trough and upslope flow. 1/n
#Henan province has seen 837 stations with 24 hour rainfall amount of 100mm+ (~4"+), 195 stations above 250mm+ (~10"+), with the bullseye centered over the state capital of #Zhengzhou, which was submerged under widespread 400~600mm totals.
Maximum hourly rain rate observed at #Zhengzhou was a staggering 201.9mm between 4-5pm local time. This is a new record for all 2418 national stations in mainland China and possibly the largest downpour in human history for a city with 10+ million population.
ECMWF ensembles showing the Fujiwhara effect between Typhoon #Cempaka 🌼 and Typhoon #Infa 🎆 as the two storms were forecasted to move around each other 🌀
That is one big monsoon gyre circulation over the northwest Pacific, formed by converging easterly trade winds and westerly monsoons. It gave birth to #Cempaka and #Infa. It might give birth to more typhoons.
Typhoon #In-fa has an eye in formation this morning (meaning: "fireworks" in Cantonese 🎆 name origin: Macao). Improving structure despite some dry air issues. #In-fa is forecasted to detach from its monsoon "tail" and continue to intensify while moving towards Taiwan.