Offline RL lets us run RL without active online interaction, but tuning hyperparameters, model capacity etc. still requires rollouts, or validation tasks. In our new paper, we propose guidelines for *fully offline* tuning for algorithms like CQL arxiv.org/abs/2109.10813
A thread:
In supervised learning, we have training and validation sets, and this works great for tuning. There is no equivalent in RL, making tuning hard. However, with CQL, when there is too much or too little model capacity, we do get very characteristic estimated vs true Q-value curves
Of course, the true return is unknown during offline training, but we can still use our understanding of the trends of estimated Q-values to provide guidelines for how to adjust model capacity. These guidelines are not guaranteed to work, but seem to work well in practice.
We evaluate these guidelines on a simulated robotic task, and two different real-world robots, and find that it works well across the board, using the same alpha=1.0 CQL parameter and fully offline selection of model capacity, regularization, etc.
A few things that I think are interesting: (1) we can do capacity/arch/hyperparam tuning *without* full OPE (which is very hard); (2) we can tune fully offline for three very different domains. But this is far from perfect, and more research is needed on better workflows.
To make an existing model more robust at test time: augment a single test image in many ways, finetune model so that predictions on augmented images "agree", minimizing marginal entropy. This is the idea behind MEMO (w/ Marvin Zhang & @chelseabfinn): arxiv.org/abs/2110.09506
🧵>
MEMO is a simple test-time adaptation method that takes any existing model (no change during training), and finetunes it on one image: 1. generate augmentations of test image 2. make predictions on all of them 3. minimize marginal entropy of these predictions (make them similar)
This can significantly improve a model's robustness to OOD inputs. Here are examples on ImageNet-C where MEMO fixes mistakes the model would have made without MEMO. This doesn't involve additional assumptions, the training is exactly the same, and it operates on one test image.
An "RL" take on compression: "super-lossy" compression that changes the image, but preserves its downstream effect (i.e., the user should take the same action seeing the "compressed" image as when they saw original) sites.google.com/view/pragmatic…
The idea is pretty simple: we use a GAN-style loss to classify whether the user would have taken the same downstream action upon seeing the compressed image or not. Action could mean button press when playing a video game, or a click/decision for a website.
The compression itself is done with a generative latent variable model (we use styleGAN, but VAEs would work great too, as well as flows). PICO basically decides to throw out those bits that it determines (via its GAN loss) won't change the user's downstream decision.
We'll present CoMPS, an algorithm for online continual meta-learning, where an agent meta-learns tasks one by one, with each task accelerating future tasks. By @GlenBerseth, WilliamZhang365, @chelseabfinn
You can watch the talk in advance here:
And then come discuss the work with Aviral at the poster sessions! This work is not released yet, but it will be out shortly.
We're quite excited about this result, and I'll try to explain why.
Deep networks are overparameterized, meaning there are many parameter vectors that fit the training set. So why does it not overfit? While there are many possibilities, they all revolve around some kind of "implicit regularization" that leads to solutions that generalize well.
Can we devise a more tractable RL problem if we give the agent examples of successful outcomes (states, not demos)? In MURAL, we show that uncertainty-aware classifiers trained with (meta) NML make RL much easier. At #ICML2021 arxiv.org/abs/2107.07184
If the agent gets some examples of high reward states, we can train a classifier to automatically provide shaped rewards (this is similar to methods like VICE). A standard classifier is not necessarily well shaped.
This is where the key idea in MURAL comes in: use normalized max likelihood (NML) to train a classifier that is aware of uncertainty. Label each state as either positive (success) or negative (failure), and use the ratio of likelihoods from these classifiers as reward!
Since many people were interested in our recent offline MBO work, I'll also write about a recent paper on MBO by Justin Fu, which trains forward models for each possible objective value and uses them to compute a posterior via NML: arxiv.org/abs/2102.07970
A thread:
The basic idea, unlike COMs (which learn pessimistic models) is to get a posterior over values for a new design x. Justin's method (NEMO) trains a separate model *for every possible value y* for the design x (discretized), and uses the likelihood from these to get the posterior.
This corresponds to the normalized maximum likelihood (NML) distribution, which has appealing regret guarantees, which we extend in NEMO to provide regret guarantees on offline MBO as well! This is more complex than COMs, but potentially more powerful as we get a full posterior.