Santiago Profile picture
24 Oct, 7 tweets, 2 min read
Full-stack Machine Learning Engineers are becoming one of the hottest commodities out there.
Full-stack machine learning engineer is the person that’s capable of working on the design, implementation, deployment, and maintainance of a machine learning system.
Different people expand or contract the term “Full-Stack” at their convenience.

That’s ok. We don’t need a dictionary to talk about this.

Full-stack is when you can work on end-to-end systems.
There’s certainly an arbitrary size of the concept “full-stack” for which the qualified population is 0.

Fortunately, is up to us to decide how much we want to tack on.

Full-stack is way smaller than “can do everything” but is larger than “purely specialized.”
Many don't like the term "full-stack" 'cause it evokes the thought of employers asking too much from employees.

I get it.

But the reality is that outside Big Pocket Companies that build full-blown out teams of specialists, most companies need generalists wearing many hats.
Communication is key.

(Not only in MLE but for any technical role.)

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Santiago

Santiago Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @svpino

26 Oct
Here is a problem for you to solve:

How many total handshakes will happen between 10 different people assuming everyone handshakes everyone else?

Don't start drawing things on paper. There's a simple way to solve this: ↓
Let's talk about "triangular series" really quick:

Here is an example of one: 1 2 3 4 5.

I know because I can organize these numbers in a triangle like the attached image shows.

Each row has an equivalent number of points (*'s). Image
Triangular series always start with 1. We can use "n" to denote the highest number of the series.

So in our [1 2 3 4 5] example, n = 5.
Read 10 tweets
22 Oct
What's a machine learning pipeline?

Well, it turns out that many different things classify as "machine learning pipelines."

Here are five of the different "pipelines" you should be aware of: ↓
Our first pipeline: "Data pipeline."

This goes from ingesting the data from its sources to the final destination where we will consume it.

Sometimes, the data pipeline includes transformations of that data. Sometimes it doesn't.

This leads me to the second pipeline.
The second pipeline: "Data transformation pipeline."

"Wait, I thought this was part of the data pipeline?" You are right; sometimes it is. Sometimes it isn't.

Sometimes, you need to separate "general" transformations from use case-specific transformations.
Read 8 tweets
19 Oct
One of the most useful things you can learn:

Greedy algorithms, how they work, and how to solve problems using them.

Here is why they are fundamental: ↓
Greedy algorithms:

• Pretty intuitive to understand
• Easy to come up with them
• A great way to solve many problems

Optimization is the root of all evil. Many times, a greedy solution is all you need to solve a problem.
At each step, a greedy algorithm always makes the best optimal choice.

(Unfortunately, this approach is not always guaranteed to converge to the optimal solution. More about this later.)

Here is an example problem where you could use a greedy algorithm:
Read 7 tweets
15 Oct
If you haven't looked into machine learning yet, you better start now.
I started looking seriously into machine learning around spring of 2015.

The field was very different back then.

Just to give you an idea, the top most popular deep learning frameworks didn't exist:

• TensorFlow was released at the end of 2015
• PyTorch in 2016
In just 5 - 6 years we have gone from "read my paper... it's cool" to "holly shit, look what my phone is doing!"

Machine learning has turned the industry upside down.

We have gone from "that's impossible" to "of course we can!" in record time.
Read 23 tweets
12 Oct
A big part of my work is to build computer vision models to recognize things.

It's usually ordinary stuff: An antenna, a fire extinguisher, a bag, a ladder.

Here is a trick I use to solve some of these problems.
The good news about having to recognize everyday objects:

There are a ton of pre-trained models that help with that. You can start with one of these models and get decent results out of the box.

This is important. I'll come back to it in a second.
Many of the use cases that I tackle are about "augmenting" the people who are working with machine learning.

Let's say you have a team looking at drone footage to find squirrels. Eight hours every day looking at images.

This sucks. I can help with that.
Read 19 tweets
11 Oct
Last week I trained a machine learning model using 100% of the data.

Then I used the model to predict the labels on the same dataset I used to train it.

I'm not kidding. Hear me out: ↓
Does this sound crazy?

Yes.

Would I be losing my shit if I heard that somebody did this?

Yes.

So what's going on?
I have a dataset with a single numerical feature and a binary target.

I need to know the threshold that better separates the positive samples from the negative ones.

I don't want a model to make predictions; I just need to know the threshold.
Read 10 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Too expensive? Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal Become our Patreon

Thank you for your support!

Follow Us on Twitter!

:(