2/ fMRI is based on a principle called “neurovascular coupling.” This is the principle if there is increased neuronal activity in a region, there will be increased blood flow to that region to meet the increased demand
3/ Think of it like a baby crying because it is hungry—parents immediately rush to feed it. The increased oxygen demand of the neurons immediately brings increased fuel to feed it.
4/ However, the body actually overreacts to that demand—it is like going McDonald’s when you are starving—you are going to walk away with way more food than you need and end up feeling incredibly stuffed. The neurons end up getting way more oxygenated blood than they need.
5/ This changes the oxygenated to deoxygenated blood ratio. Initially deoxygenated blood is increased b/c activated neurons are using up oxygen, but this is soon overwhelmed by supply. So counterintuitively—oxygenated blood is more with this metabolic activity.
6/ This is important b/c deoxygenated blood⬇️fMRI signal & oxygenated blood⬆️it. Initially, a signal drop occurs as neurons use up oxygen, but the tidal wave of oxygenated blood coming in overwhelms this & you get increased signal w/neuronal activity.
7/ So if you perform an activity, say finger tapping, the regions involved in finger tapping (motor cortex) will experience increased blood flow compared to regions of the brain that are not involved in that activity.
8/ B/c of increased blood flow, oxygenated blood & fMRI signal will increase in regions involved in a task compared to those not involved. This is how we map what brain regions are associated with an activity—not just finger tapping, but language, memory, etc.
9/ fMRI images are made by subtracting images taken during baseline (no activity) from images taken during activity. All that will left after the subtraction is the increased flow/signal over baseline--and this will only be in regions activated by the task.
10/ For the baseline image, no activity is performed, and so no regions are activated, so all regions will show low signal.
11/ When a task begins, blood flow only increases to regions involved in the task, so only those regions will have increased blood flow/signal over baseline. This example is finger tapping, but we can map which regions are associated w/more complex brain activities.
12/ Here is an example w/finger tapping. At baseline, the motor cortex is not activated & has low flow. But w/finger tapping, signal increases w/increased flow. So when we subtract baseline images from activity images, the increased signal over baseline remains.
13/ On the fMRI images, we see the increased signal over baseline as the colored blobs you all recognize. These just mean there is increased blood flow in this region over baseline with a given activity, and so that specific activity maps to that region.
14/ Now let’s look at a region not activated by finger tapping. At baseline, it is not activated & has low flow. W/finger tapping, it is also not activated & flow is same as baseline. So w/subtraction, the 2 images are identical & cancel out, so signal is 0.
15/ Since signal is zero, there are no colored blobs in this region and so we know this region is not associated with the task.
16/ So those fMRI colored blobs just mean there is⬆️flow in a region w/an activity & so that region is involved in performing that task. That's how we map the different "functions" of brain regions
So next time if someone asks you if you understand fMRI you can say “F--- yeah!”
Here's a little help on how to do it yourself w/a thread on how to read a head CT!
2/In bread & butter neuroimaging—CT is the bread—maybe a little bland, not super exciting—but necessary & you can get a lot of nutrition out of it
MRI is like the butter—everyone loves it, it makes everything better, & it packs a lot of calories. Today, we start w/the bread!
3/The most important thing to look for on a head CT is blood.
Blood is Bright on a head CT—both start w/B.
Blood is bright bc for all it’s Nobel prizes, all CT is is a density measurement—and blood is denser (thicker) than water & denser things are brighter on CT
MMA fights get a lot of attention, but MMA (middle meningeal art) & dural blood supply doesn’t get the attention it deserves.
A thread on dural vascular anatomy!
2/Everyone knows about the blood supply to the brain.
Circle of Willis anatomy is king and loved by everyone, while the vascular anatomy of the blood supply to the dura is the poor, wicked step child of vascular anatomy that is often forgotten
3/But dural vascular anatomy & supply are important, especially now that MMA embolizations are commonly for chronic recurrent subdurals.
It also important for understanding dural arteriovenous fistulas as well.