Lea Alhilali, MD Profile picture
May 20, 2022 17 tweets 8 min read Read on X
1/
Everyone loves those pretty colored fMRI pictures with the blobs. But what do they mean? How do they make them?
A #tweetorial called “F— that: Understanding fMRI”. #FOAMed #medtwitter #Medstudenttwitter #neurotwitter #FOAMrad #neuroradiology #radiology
2/
fMRI is based on a principle called “neurovascular coupling.” This is the principle if there is increased neuronal activity in a region, there will be increased blood flow to that region to meet the increased demand
3/
Think of it like a baby crying because it is hungry—parents immediately rush to feed it. The increased oxygen demand of the neurons immediately brings increased fuel to feed it.
4/
However, the body actually overreacts to that demand—it is like going McDonald’s when you are starving—you are going to walk away with way more food than you need and end up feeling incredibly stuffed. The neurons end up getting way more oxygenated blood than they need.
5/
This changes the oxygenated to deoxygenated blood ratio. Initially deoxygenated blood is increased b/c activated neurons are using up oxygen, but this is soon overwhelmed by supply. So counterintuitively—oxygenated blood is more with this metabolic activity.
6/
This is important b/c deoxygenated blood⬇️fMRI signal & oxygenated blood⬆️it. Initially, a signal drop occurs as neurons use up oxygen, but the tidal wave of oxygenated blood coming in overwhelms this & you get increased signal w/neuronal activity.
7/
So if you perform an activity, say finger tapping, the regions involved in finger tapping (motor cortex) will experience increased blood flow compared to regions of the brain that are not involved in that activity.
8/
B/c of increased blood flow, oxygenated blood & fMRI signal will increase in regions involved in a task compared to those not involved. This is how we map what brain regions are associated with an activity—not just finger tapping, but language, memory, etc.
9/
fMRI images are made by subtracting images taken during baseline (no activity) from images taken during activity. All that will left after the subtraction is the increased flow/signal over baseline--and this will only be in regions activated by the task.
10/
For the baseline image, no activity is performed, and so no regions are activated, so all regions will show low signal.
11/
When a task begins, blood flow only increases to regions involved in the task, so only those regions will have increased blood flow/signal over baseline. This example is finger tapping, but we can map which regions are associated w/more complex brain activities.
12/
Here is an example w/finger tapping. At baseline, the motor cortex is not activated & has low flow. But w/finger tapping, signal increases w/increased flow. So when we subtract baseline images from activity images, the increased signal over baseline remains.
13/
On the fMRI images, we see the increased signal over baseline as the colored blobs you all recognize. These just mean there is increased blood flow in this region over baseline with a given activity, and so that specific activity maps to that region.
14/
Now let’s look at a region not activated by finger tapping. At baseline, it is not activated & has low flow. W/finger tapping, it is also not activated & flow is same as baseline. So w/subtraction, the 2 images are identical & cancel out, so signal is 0.
15/
Since signal is zero, there are no colored blobs in this region and so we know this region is not associated with the task.
16/
So those fMRI colored blobs just mean there is⬆️flow in a region w/an activity & so that region is involved in performing that task. That's how we map the different "functions" of brain regions
So next time if someone asks you if you understand fMRI you can say “F--- yeah!”

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Lea Alhilali, MD

Lea Alhilali, MD Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @teachplaygrub

Mar 3
1/Does PTERYGOPALATINE FOSSA anatomy feel as confusing as its spelling?

Does it seem to have as many openings as letters in its name?

Are you pterrified of the pterygopalatine fossa (PPF)?

Let this thread on PPF anatomy help you out. Image
2/The PPF is a crossroads between the skullbase & the extracranial head and neck

There are 4 main regions that meet here:

(1) Skullbase itself posteriorly, (2) nasal cavity medially, (3) infratemporal fossa laterally, and (4) orbit anteriorly. Image
3/At its most basic, you can think of the PPF as a room with 4 doors opening to each of these regions: one posteriorly to the skullbase, one medially to the nasal cavity, one laterally to the infratemporal fossa, and one anteriorly to the orbit Image
Read 18 tweets
Feb 28
1/Feel like a fish out of water when it comes to water on the brain?

Read on for this month’s @Radiographics summary of what you need to know about hydrocephalus!!



@cookyscan1 @RadG_editor #RGphx doi.org/10.1148/rg.240…Image
2/To understand hydrocephalus, think of CSF like the flow of traffic

3 main ways traffic backs up:

(1) Obstruction on the road:
For hydrocephalus, this is an obstruction along CSF in the ventricle Image
3/

(2) Obstruction of an off ramp
For hydrocephalus=obstruction at its off ramp into the venous system

(3) Rush hour
For hydrocephalus=over production Image
Read 8 tweets
Feb 27
1/Do scans for dizziness make your head spin?

Need to know what to look for?

Just hear me out!

This month’s @theAJNR SCANtastic will show what to look for:

ajnr.org/content/46/2/3…Image
2/I always remember the rhyme of the big three for dizz-ee!

First, are vestibular schwannomas

These give an ice cream cone shape in the internal auditory canal! So scoop up that finding! Image
3/Next is labyrinthitis

Labyrinthitis can look like night & day, depending on the timing

Late labyrinthitis is dark—loss of bright fluid signal on FIESTA

Early labyrinthitis is bright—enhances on post-contrast Image
Read 12 tweets
Feb 26
1/Time is brain! But what time is it?

If you don’t know the time of stroke onset, are you able to deduce it from imaging?

Here’s a thread to help you date a stroke on MRI! Image
2/Strokes evolve, or grow old, the same way people evolve or grow old

The appearance of stroke on imaging mirrors the life stages of a person—you just have to change days for a stroke into years for a person

So 15 day old stroke has features of a 15 year old person, etc. Image
3/Initially (less than 4-6 hrs), the only finding is restriction (brightness) on diffusion imaging (DWI)

You can remember this bc in the first few months, a baby does nothing but be swaddled or restricted

So early/newly born stroke is like a baby, only restricted Image
Read 10 tweets
Feb 25
1/My hardest thread yet! Are you up for the challenge?

How stroke perfusion imaging works!

Ever wonder why it’s Tmax & not Tmin?

Do you not question & let RAPID read the perfusion for you? Not anymore! Image
2/Perfusion imaging is based on one principle: When you inject CT or MR intravenous contrast, the contrast flows w/blood & so contrast can be a surrogate marker for blood.

This is key, b/c we can track contrast—it changes CT density or MR signal so we can see where it goes. Image
3/So if we can track how contrast gets to the tissue (by changes in CT density or MR signal), then we can approximate how BLOOD is getting to the tissue.

And how much blood is getting to the tissue is what perfusion imaging is all about. Image
Read 18 tweets
Feb 24
1/”That’s a ninja turtle looking at me!” I exclaimed. My fellow rolled his eyes at me, “Why do I feel I’m going to see this a thread on this soon…”

He was right! A thread about one of my favorite imaging findings & pathology behind it Image
2/Now the ninja turtle isn’t an actual sign—yet!

But I am hoping to make it go viral as one. To understand what this ninja turtle is, you have to know the anatomy.

I have always thought the medulla looks like a 3 leaf clover in this region.

The most medial bump of the clover is the medullary pyramid (motor fibers).

Next to it is the inferior olivary nucleus (ION), & finally, the last largest leaf is the inferior cerebellar peduncle.

Now you can see that the ninja turtle eyes correspond to the ION.Image
3/But why are IONs large & bright in our ninja turtle?

This is hypertrophic olivary degeneration.

It is how ION degenerates when input to it is disrupted. Input to ION comes from a circuit called the triangle of Guillain & Mollaret—which sounds like a fine French wine label! Image
Read 9 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(