Lea Alhilali, MD Profile picture
Jun 17, 2022 20 tweets 10 min read Read on X
1/Radiologist not answering the phone?Just want a quick read on that stat head CT?

Here's a little help on how to do it yourself w/a #tweetorial on how to read a head CT!
#medtwitter #FOAMed #FOAMrad #medstudenttwitter #medstudent #neurorad #radres @MedTweetorials #neurosurgery Image
2/In bread & butter neuroimaging—CT is the bread—maybe a little bland, not super exciting—but necessary & you can get a lot of nutrition out of it. MRI is like the butter—everyone loves it, it makes everything better, & it packs a lot of calories. Today, we start w/the bread! Image
3/The most important thing to look for on a head CT is blood. Blood is Bright on a head CT—both start w/B. Blood is bright bc for all it’s Nobel prizes, all CT is is a density measurement—and blood is denser (thicker) than water and denser things are brighter on CT Image
4/Once you see blood, the next question is—where is it? To know this, we need to know meningeal layers. Outer most layer is the dura mater. I remember it bc dura mater is DURAble. It is thick like a winter coat. Like a winter coat, it doesn’t hug the curves & hides rolls of fat. Image
5/Inner most layer is the pia mater. It is thin and hugs the curves of the brain like an adult onsie. I remember it bc pee-ah mater is just a few letters away from pee-jay mater—so it sounds like adult onsie PJs Image
6/In between these two layers is the arachnoid. It is called that because it contains web like septations like a spider’s web (ARACHnoid like ARACHnophobia). So now you know the meningeal layers. I remember the order bc the meninges “P-A-D” the brain—Pia/Arachnoid/Dura Image
7/Blood can be anywhere in these layers. EPIdural is beside the dura, or outside all layers. SUBdural is below the dura, but still outside pia & arachnoid. SUBarachnoid is below both dura & arachnoid. I’m skipping intraparenchymal hemorrhage here bc that is relatively obvious. Image
8/Each of these types of hemorrhage has a unique look on CT. Epidural hemorrhage is called “lentiform” bc it is convex out like a lens or a pregnant belly. Subdural hemorrhage wraps around the brain like a crescent. Subarachnoid hemorrhage is curvy between gyri like a snake Image
9/So why is intracranial hemorrhage so dangerous? You won’t exsanguinate from intracranial hemorrhage like a retroperitoneal bleed. The reason intracranial hemorrhage is so dangerous is bc the calvarium is a closed space with no give for anything extra. Image
10/So when you add something extra like blood, the calvarium won’t give, and something else has to—and that’s the brain. Blood will push on the brain causing damage from the associated mass effect. Image
11/Let’s talk about mass effect. Symmetry is beautiful—that’s why Denzel Washington is such the epitome of beauty bc he is perfectly symmetry. The brain on a CT should be symmetric. A CT tech once told me he could make all the findings on CTs bc all he did was look for asymmetry. Image
12/So on every CT you should look for symmetry—and things that are asymmetric are BAD. If you can’t draw a line down the middle have each side be a mirror image—something is wrong. Image
13/This asymmetry was from an subdural hemorrhage that was the same density as brain—making it difficult to visualize, but you could tell it was there from the asymmetry it caused. Mass effect causes asymmetry Image
14/Mass effect can cause brain to herniate into wrong compartments. There are 2 main herniation types. Subfalcine herniation is where one side slides under the falx to the other side. On CT, we call this midline shift—how much one side shifts under the midline to the other side Image
15/Next is transtentorial herniation—where the supratentorial compartment herniates through the tentorium that separates the cerebral hemispheres from the cerebellum. We see this on CT by effacement of the basilar cisterns—which are CSF spaces at the base of the brain. Image
16/The two most important cisterns for herniation are the suprasellar cistern—which looks like a pentagon—and the ambient/quadrigeminal cistern that look like the mouth of a semi-evil smiley face with the lateral and third ventricles as the eyes and nose. Image
17/With transtentorial herniation, we are looking for that pentagon to become a triangle or that smiley to get a Bell’s palsy—with part of it missing. If you see either of those, there is transtentorial herniation. Image
18/The final thing to look for on a head CT is a stroke. We see this as loss of gray-white differentiation. Normally, the interface between gray and white matter is crisp and looks like long octopus arms of white matter reaching out into the gray matter. Image
19/With a stroke, this interface gets blurred. It is like some took a painting that had a clear line between the white and gray matter and just smeared the white matter into the gray matter. If I see anywhere where the white matter looks smeared into the gray, I call an infarct Image
20/So now you know the basics of head CTs! Hopefully now your reads of the bread of neuroimaging will go smoothly like butter! Image

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Lea Alhilali, MD

Lea Alhilali, MD Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @teachplaygrub

Sep 15
1/Time is brain!

So you don’t have time to struggle w/that stroke alert head CT.

Here’s a thread to help you with the CT findings in acute stroke! Image
2/CT in acute stroke has 2 main purposes

(1) exclude hemorrhage (a contraindication to thrombolysis)

(2) exclude other pathologies mimicking acute stroke. But you can also see other findings to help diagnosis a stroke. Image
3/Infarct appearance depends on timing.

In first 12 hrs, the most common imaging finding is…a normal head CT

However, you may see a hyperdense artery or basal ganglia obscuration. Later, you see loss of gray white differentiation & sulcal effacement Image
Read 13 tweets
Sep 12
1/Do you feel there’s a back-log of findings in a spine MRI report?

Everyone talks about discs & facets, but not everyone talks about the endplates

Do you?

Do you need to talk about degenerative changes (Modic changes) of the endplates?

Here’s thread w/all you need to know! Image
2/Over 30 years ago, Modic et al. found there were 3 types of degenerative endplate changes:

(1) T2 bright changes (indicating edema, Modic 1)
(2) T1 bright changes (indicating fat, Modic 2)
(3) T1 & T2 dark changes (indicating sclerosis, Modic 3)

But what do they mean? Image
3/Let’s start w/Modic 1.

These are bright on T2, indicating edema

On pathology, it’s what you’d expect w/edema: inflammation, vascular granulation tissue, & high cellular turnover

Vascular granulation tissue means these can enhance on post contrast images—mimicking discitis! Image
Read 18 tweets
Sep 10
1/Are you FISHING for a way to better evaluate subarachnoid hemorrhage?

Are you hungry for a way to classify these patients?

Donut you worry!

Here’s a short thread to help you remember the modified Fisher scale for classifying subarachnoid hemorrhage. Image
2/Just think of the brain as a donut. Like a donut, it’s a bunch of stuff around a hole in the middle.

Ventricles are the hole in the middle of the brain just like there’s a hole in the middle of the dough in a donut.

Just don’t quote me to your neuroanatomy professor…. Image
3/Subarachnoid hemorrhage (SAH) added to the brain makes it less healthy, the same way adding toppings to a donut makes it less healthy.

Increasing severity of SAH is like increasingly unhealthy donut toppings. Fisher scale quantifies the vasospasm risk for increasing SAH Image
Read 8 tweets
Sep 8
1/Talk about twisting your back!

Do spine vascular lesions make your brain feel as tangled as the dilated vessels you see?

Want some more information on malformations?

Here’s a thread on spine vascular anatomy to give you durable knowledge on dural arteriovenous fistulas (dAVF)Image
2/To understand spinal dural AVFs, you need to understand basic spinal vascular anatomy.

The spine is LONG—to get blood from the top to the bottom is like going through the length of a marathon course Image
3/So we will need to tackle it like you tackle running a marathon.

When you run a marathon, you replenish yourself at aid/water stations along the way so you can make it all the way through.

Same w/spinal arterial vasculature—it needs to be replenished on the way down. Image
Read 19 tweets
Sep 3
1/Does the work up for dizziness make your head spin?

Wondering what to look for on an MR for dizziness

This month’s @theAJNR SCANtastic will tell you all you need about imaging Meniere’s disease!

ajnr.org/content/46/8/1…Image
@TheAJNR 2/The etiology for dizziness can have very diverse causes—each with very different treatments.

So it is important to try to differentiate

Meniere’s is a common cause & we can help diagnose it w/imaging! Image
@TheAJNR 3/To understand Meniere’s disease, you must know labyrinth anatomy

It has layers, like Russian nesting dolls. Outer doll is the bony labyrinth, holding perilymph & a second doll—membranous labyrinth.

Inside the membranous labyrinth is endolymph Image
Read 13 tweets
Aug 1
1/They say form follows function!

Brain MRI anatomy is best understood in terms of both form & function.

Here’s a short thread to help you to remember important functional brain anatomy--so you truly can clinically correlate! Image
2/Let’s start at the top. At the vertex is the superior frontal gyrus. This is easy to remember, bc it’s at the top—and being at the top is superior. It’s like the superior king at the top of the vertex. Image
3/It is also easy to recognize on imaging. It looks like a big thumb pointing straight up out of the brain. I always look for that thumbs up when I am looking for the superior frontal gyrus (SFG) Image
Read 12 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(