Lea Alhilali, MD Profile picture
Jun 27, 2022 22 tweets 10 min read Read on X
1/Do radiologists sound like they are speaking a different language when they talk about MRI? T1 shortening what?T2 prolongation who?
Here’s a translation w/a #tweetorial introduction to MRI
#medtwitter #FOAMed #FOAMrad #medstudent #neurorad #radres @MedTweetorials #neurosurgery Image
2/When it comes to bread and butter neuroimaging—MRI is definitely the butter. Butter makes everything taste better and packs a lot of calories. MRI can add so much information to a case Image
3/In fact, if CT is a looking glass into the brain—MRI is a microscope. It can tell us so much more about the brain and pathology that affects the brain. So let’s talk about the basic sequences that make up an MRI and what they can show us. Image
4/Let’s start w/T1—it is #1 after all! T1 is for anatomy. Since it’s anatomic, brain structures will reflect the same color as real life. So gray matter is gray on T1 & white matter is white on T1. So if you see an image where gray is gray & white is white—you know it’s a T1. Image
5/T1 is also for contrast. Contrast material helps us to see masses. Contrast can’t get into normal brain & spine bc of the blood brain barrier—but masses don’t have a blood brain barrier, so when you give contrast, masses will take it up & light up, making them easier to see. Image
6/So to review, T1 is for anatomy and contrast. I remember this bc anatomy is the number 1 thing a radiologist needs to know and a mass is the number 1 thing a radiologist doesn’t want to miss. Image
7/Now to T2! T2 sequences are water sensitive sequences. What is pathologic water in the brain? Edema! My attending once said, “Everything bad in this world is trying to turn you back into what you came from—water. So T2 shows you edema—but this edema can be from many things. Image
8/To review—T1 is for anatomy and contrast, T2 (and FLAIR, which is a type of T2) is for water—which is bright on T2. I remember this bc H20 has a 2 in it—T2 is for H20. Image
9/Next to diffusion or DWI. Diffusion is primarily to detect stroke. Acute strokes are bright on diffusion. But just as all that glitters is not gold, not all that is bright on DWI is an acute stroke. Image
10/This is bc all diffusion does is detect how difficult it is for water to move. Anything that makes the space around water crowded and difficult to move will be bright on diffusion imaging Image
11/So classically, it from a stroke. When cells run out of ATP, the Na/K pump stops working & immediately water rushes in from osmotic pressure & the cells swell. These swollen cells fill the interstitium & restrict the movement of water. This is why strokes are bright on DWI! Image
12/But other things can make it crowded and difficult for water to move. For example, tightly packed cells in aggressive tumors will also fill the spaces & make it difficult for water to move—it is trapped between the tumor cells! So highly cellular tumors are often bright on DWI Image
13/Here is an example. Here is a mass that is as bright as stroke on diffusion bc of its densely packed cells. On contrast images, we see it avidly enhance, as we would expect for a mass. On CT, the tumor is very dense bc of the densely packed cells. Image
14/Hematomas are also bright on DWI. In normal blood, water flows happy & free—but once the clotting cascade starts & fibrin & thrombin & whatever stuff I don’t remember as a radiologist clumps everything together, things get tight—water is trapped in the clot interstices! Image
15/Here is an example. The hemorrhage is bright on CT bc it is clotted, and thus more dense than the brain and CSF, which are closer in density to water. For this same reason, the hemorrhage is bright on diffusion—bc the dense clot traps the water. Image
16/Pus is also bright on diffusion. As a radiologist I don’t often see pus, but as a mom, I sure do. It is thick and gooey and you can just imagine how difficult it is for water to travel through that gelantinous blob of pus. Image
17/Here’s an example. There is a ring enhancing lesion w/a lot of edema on T2. Centrally, there is restricted diffusion, meaning that there is something gooey or thick or dense centrally. Bc this central stuff doesn’t enhance, we know it’s not a mass. This is pus in an abscess! Image
18/So to review--while not everything that is bright on diffusion is a stroke, the most important use is for strokes. I remember this bc it's called DWI--which I joking say stands for Diagnose With Infarct! Image
19/Last but not least is gradient imaging. Gradient imaging is sensitive to metals. And what’s the most important metal in body? Iron—bc iron is in blood. So gradient is our blood sensitive sequence Image
20/Blood is black on gradient. I remember this bc gradient is for metal—and when I think of metal, I think of blacksmiths forging metal products. So BLACKsmith=metal is BLACK on gradient. Image
21/But other metals will be black too. Notably, calcium, which is in our bones and in many other lesions. So remember, just all that glitters is not gold, not all that is black on gradient is blood—other metals are black too Image
22/So now you know the basic MRI sequences and what they are used for. So hopefully now, the radiologist won’t sound like they are speaking a different language when they talk to you—they will just be nerdy and socially awkward when they do! Image

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Lea Alhilali, MD

Lea Alhilali, MD Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @teachplaygrub

May 8
1/Asking “How old are you?” can be dicey—both in real life & on MRI!

Do you know how to tell the age of blood on MRI?

Here’s a thread on how to date blood on MRI!

After reading this, when you see a hemorrhage, your guess on its age will always be in the right vein! Image
2/If you ask someone how to date blood on MRI, they’ll spit out a crazy mnemonic about babies that tells you what signal blood should be on T1 & T2 imaging by age.

But mnemonics are crutch—they help you memorize, but not understand

If you understand, you don’t need to memorize Image
3/If you look at the mnemonic, you will notice one thing—the T1 signal is all you need to tell if blood is acute, subacute or chronic.

T2 signal will tell if it is early or late in each of those time periods—but that type of detail isn’t needed in real life

So let’s look at T1 Image
Read 21 tweets
May 3
1/Time to go with the flow!

Hoping no one notices you don’t know the anatomy of internal carotid (ICA)?

Do you say “carotid siphon” & hope no one asks for more detail?

Here’s a thread to help you siphon off some information about ICA anatomy! Image
2/ICA is like a staircase—winding up through important anatomic regions like a staircase winding up to each floor Lobby is the neck.

First floor is skullbase/carotid canal. Next it stops at the cavernous sinus, before finally reaching the rooftop balcony of the intradural space. Image
3/ICA is divided into numbered segments based on landmarks that denote transitions on its way up the floors.

C1 is in the lobby or neck.

You can remember this b/c the number 1 looks elongated & straight like a neck. Image
Read 10 tweets
Apr 25
1/Have some confusion about tumor perfusion?

Do you go into a coma looking at scans for glioma?

Never fear!

Read on for this month's @theAJNR SCANtastic for what you need to know on the latest in brain tumor imaging!

ajnr.org/content/45/4/4…
Image
@TheAJNR 2/Since the prehistoric days of medicine (1979!), we knew that some brain tumor patients treated w/radiation (XRT) initially declined, but then get better.

Today, we see this on imaging, where it looks worse early, but then gets better.

Now we call this pseudoprogression. Image
@TheAJNR 3/Why does this happen?

XRT induces a lot of inflammatory changes—from initiating the complement cascade to opening the blood brain barrier (BBB)

It’s these inflammatory changes that make the imaging look worse. Image
Read 21 tweets
Apr 19
1/Having trouble remembering how to differentiate dementias on imaging?

Is looking at dementia PET scans one of your PET peeves?

Here’s a thread to show you how to remember the imaging findings in dementia & never forget! Image
2/The most common functional imaging used in dementia is FDG PET. And the most common dementia is Alzheimer’s disease (AD).

On PET, AD demonstrates a typical Nike swoosh pattern—with decreased metabolism in the parietal & temporal regions Image
3/The swoosh rapidly tapers anteriorly—& so does hypometabolism in AD in the temporal lobe. It usually spares the anterior temporal poles.

So in AD look for a rapidly tapering Nike swoosh, w/hypometabolism in the parietal/temporal regions—sparing the anterior temporal pole Image
Read 16 tweets
Apr 18
1/”That’s a ninja turtle looking at me!” I exclaimed.

My fellow rolled his eyes, “Why do I feel I’m going to see this on X or twitter soon…”

He was right!

A thread about one of my favorite imaging findings & pathology behind it ! Image
2/Now the ninja turtle isn’t an actual sign—yet!

But I am hoping to make it go viral as one.

To understand what this ninja turtle is, you first have to know the anatomy in this region.

I have always thought the medulla looks like a 3 leaf clover in this region. Image
3/ The most medial bump of the clover is the medullary pyramid (motor fibers).

Next to it is the inferior olivary nucleus (ION), & finally, the last largest leaf is the inferior cerebellar peduncle.

Now you can see that the ninja turtle eyes correspond to the ION. Image
Read 11 tweets
Apr 17
1/CSF leaks are controversial!

Some say they're overdiagnosed, others underdiagnosed

How can YOU make sure you aren’t under or overdiagnosing?

Are you BERN-ing to know when to suspect CSF leak?

Here’s a 🧵about the CSF leak Bern score so you don’t get BERN-ed by CSF leaks Image
2/In CSF leaks, everyone knows about brain sagging.

But this can happen w/other diseases, ie Chiari 1.

Other findings can be seen on brain MRI in CSF leaks.

But what are these findings & are some findings more suggestive than others?

Do⬆️findings = ⬆️suspicion? Image
3/The Bern group looked at 9 quantitative & 7 qualitative signs seen on brain MRI in CSF leaks to see which are most important.

Depending on type & # of findings, they developed a score to indicate what level of suspicion you should have for a leak. Image
Read 15 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(