2/Here are 3 lesions, all round and bright and in the region of the foramen of Monro. Can you tell from the images which is a colloid cyst and which may be something else? Choose which one or ones you think are a colloid cyst
Choose which one you think is a colloid cyst
4/In this case it was A. B was a tortuous basilar and C was a cavernoma of the chiasm/hypothalamus that had bled and projected into the third ventricle.
5/Many lesions may mimic a colloid cyst at the foramen of Monro. Below is a list, but it is by no means exhaustive. So with so many mimickers, how can you know when to call a colloid cyst?
6/They say location is everything--especially in colloid cysts. 99% of them are located at the foramen of Monro, so if it isn't at the foramen, be suspicious that it isn't a colloid cyst
7/Another feature that makes it special is actually how few special features it has! It should be very featureless. Many imaging findings we use to characterize lesions (enhancement, calcification, diffusion restriction), should all be absent in a colloid cyst
8/I remember this bc colloid cysts are kind of cousins to other midline congenital cysts (Rathke's cyst & Thornwaldt cyst) & they behave similarly. So if there's a feature that would be weird in a Rathke's or Thornwald cyst (calcs, enhancement), it's weird for a colloid cyst
9/But recognizing a colloid cyst isn't enough. There are important things to mention in your report. You should mention anatomic variants of the septum & fornix that could affect the surgical approach. Also mention low T2 signal, as these cysts can be more difficult to resect
10/Another important issue is where along the 3rd ventricle the cyst extends. Zone 1 is anterior to the mass intermedia, Zone 2 is behind Zone 1 but anterior to the aqueduct, and Zone 3 is behind Zone 2. Zones 1 & 3 are higher risk
11/I hate it when classifications don't go in order. I want Zone 1 to be lowest risk and Zone 3 highest. I hate it when there is a sine wave of risk in the classification
12/But you can remember this by remembering that there are openings at the anterior & posterior 3rd ventricle. So anteriorly you are at risk of obstructing the foramen & posteriorly the aqueduct. Zone 2 is just the zone sandwiched between to the two openings, so it is low risk.
13/So remember, there are mimics of colloid cysts all around. So look at the imaging findings, instead of listening to the siren song!
• • •
Missing some Tweet in this thread? You can try to
force a refresh
@TheAJNR 2/Vascular cognitive impairment, or its most serious form, vascular dementia, used to be called multi-infarct dementia.
It was thought dementia directly resulted from brain volume loss from infarcts, w/the thought that 50-100cc of infarcted related volume loss caused dementia
@TheAJNR 3/But that’s now outdated. We now know vascular dementia results from diverse pathologies that all share a common vascular origin.
It’s possible to lose little volume from infarct & still result in dementia.
So if infarcts are common—which contribute to vascular dementia?
@TheAJNR 2/In the lumbar spine, it is all about the degree of canal narrowing & room for nerve roots.
In the cervical spine, we have another factor to think about—the cord.
Cord integrity is key. No matter the degree of stenosis, if the cord isn’t happy, the patient won’t be either
@TheAJNR 3/Cord flattening, even w/o canal stenosis, can cause myelopathy.
No one is quite sure why.
Some say it’s b/c mass effect on static imaging may be much worse dynamically, some say repetitive microtrauma, & some say micro-ischemia from compression of perforators
1/Do radiologists sound like they are speaking a different language when they talk about MRI?
T1 shortening what? T2 prolongation who?
Here’s a translation w/an introductory thread to MRI.
2/Let’s start w/T1—it is #1 after all! T1 is for anatomy
Since it’s anatomic, brain structures will reflect the same color as real life
So gray matter is gray on T1 & white matter is white on T1
So if you see an image where gray is gray & white is white—you know it’s a T1
3/T1 is also for contrast
Contrast material helps us to see masses
Contrast can’t get into normal brain & spine bc of the blood brain barrier—but masses don’t have a blood brain barrier, so when you give contrast, masses will take it up & light up, making them easier to see.