2/First some anatomy. Palatine tonsils (or faucial to the cool kids) sit in the oropharynx between the two palatine arches: the palatoglossus arch in front and the palatopharyngeus arch in back. These are easily visible on physical exam.
3/These archs are actually just mucosa draped over the palatoglossus and palatopharygeus musculature, like kids drape sheets over themselves to dress up for Halloween.
4/The palatine tonsils sit nestled in between these two arches in a space called the tonsillar fossa. The pillars are like the bed and blankets--and the tonsils are tucked in between
5/Tonsils are made up triangular folds w/crevices in between, called crypts. This anatomy increases tonsillar surface area to expose it to as many of the oropharyngeal antigens as possible. Just below the surface are many lymph node germinal centers to examine the antigens
6/The lymphatic channels from these germinal centers are valveless (in adults—I don’t do kids 😉). This allows for immediate transport of antigens. This makes sense, as you want to be aware of any bad antigen entering your oropharynx as soon as possible
7/Tonsillitis occurs when there is an infection of the tonsils, usually strep pneumo. Inflammatory debris is made in the crypts and excreted out, creating the white patches seen on physical exam
8/On CT, this inflammatory change causes enlargement of the tonsils and hyper-enhancement of the crypts. This results in the classic tiger-stripe appearance of tonsillitis.
9/An abscess occurs when one of these crypts gets obstructed and its inflammatory exudate turns into pus under pressure.
10/But the pus doesn’t stay in the tonsil. It’s under pressure, like a volcano. If it’s plugged, the lava will find a way out b/c of the pressure. Lava will flow out any cracks/pores in the rock. In the tonsil, pores are the valveless lymphatics that allow the pus to flow out
11/Trying to keep the pus in the tonsil is like trying to keep water in a bathtub when the drain is open. It will always pour out. Similarly, in adults, the pus never stays in the tonsil—it pours out the valveless lymphatics into the tonsillar fossa/peritonsillar space.
12/Once the pus is in the tonsillar fossa, it becomes a peritonsillar abscess. It does not have to go through the superior constrictor musculature to be considered a peritonsillar abscess
13/So, in adults, the answer to the question “Tonsillar or peritonsillar abscess?” is the same answer my kid knows to give when asked, “Which parent do you love the most?” The answer: both!
• • •
Missing some Tweet in this thread? You can try to
force a refresh
1/Does trying to figure out cochlear anatomy cause your head to spiral?
Hungry for some help?
Here’s a thread to help you untwist cochlear CT anatomy w/food analogies!
2/On axial temporal bone CT, you cannot see the whole cochlea at once. So let’s start at the bottom.
The first thing you come to is the basal turn of the cochlea (makes sense, basal=bottom). On axial images, it looks like a banana. I remember both Basal and Banana start w/B.
3/As you move up to the next slice, you start to see the upper turns of the cochlea coming in above the basal turn. They look like a stack of pancakes.
Pancakes are the heart of any breakfast, so they are at the heart or middle of the cochlea on imaging.
MMA fights get a lot of attention, but MMA (middle meningeal art) & dural blood supply doesn’t get the attention it deserves.
A thread on dural vascular anatomy!
2/Everyone knows about the blood supply to the brain.
Circle of Willis anatomy is king and loved by everyone, while the vascular anatomy of the blood supply to the dura is the poor, wicked step child of vascular anatomy that is often forgotten
3/But dural vascular anatomy & supply are important, especially now that MMA embolizations are commonly for chronic recurrent subdurals.
It also important for understanding dural arteriovenous fistulas as well.