Lea Alhilali, MD Profile picture
Nov 28, 2022 21 tweets 11 min read Read on X
1/Asking “How old are you” can be dicey—both in real life & on MRI! Do you know how to tell the age of blood on MRI?

Here’s a #tweetorial on how to date blood on MRI
#medtwitter #neurorad #radtwitter #RSNA2022 #RSNA22 #radres #neurosurgery #neurology #meded #neurotwitter #FOAMed Image
2/If you ask someone how to date blood on MRI, they’ll spit out a crazy mnemonic about babies that tells you what signal blood should be on T1 & T2 imaging by age

But mnemonics are crutch—they help you memorize, but not understand. If you understand, you don’t need to memorize Image
3/If you look at the mnemonic, you will notice one thing—the T1 signal is all you need to tell if blood is acute, subacute or chronic

T2 signal will tell if it is early or late in each of those time periods—but that type of detail isn’t needed in real life. So let’s look at T1 Image
4/To understand how blood looks on MRI at different ages, you need 2 basic MRI rules.

Remember T1 loves protein. More protein = brighter on T1. I remember this bc T1 looks like the T & I in proTeIn.

T2 loves water. Fluid is bright on T2. This is easy bc there’s a 2 in H2O. Image
5/Acute blood is in the first hours. It is basically blood that has just poured out of the artery.

If you think about how acute bleeding looks in real life, you know the properties of acute blood—it’s basically water w/a little protein to gives it the red color & thickness Image
6/How does T1 feel about acute blood?

Well, acute blood is a lot of water w/a little protein. So you will get some love from T1 for the litte protein. But it won’t be super bright bc the protein content isn’t that high—it’s diluted.

So it acute blood is isointense on T1. Image
7/Here’s an example of acute blood on T1.

The hematoma is very dense on CT, consistent w/acute timing.

On T1, its isointense to brain. It’s not bright bc protein content is relatively low. But it isn’t dark either, bc proteins are in blood that will give it some signal Image
8/After a few days, you get subacute blood. In the subacute period, blood gets oxidized. It’s like what happens to an apple when you leave it out, or why a steak turns dark when it’s left out. Subacute blood is oxidized blood that has been left out for a few days like a steak. Image
9/When blood gets oxidized in the subacute period, hemoglobin becomes methemoglobin. This change in hemoglobin marks the transition from acute to subacute blood. Image
10/Subacute period is like aging a steak. Cells will begin to lyse & water content will be lost. This is exactly what happens w/a steak. It’s why we age a steak—the broken down proteins & lower water content lead to a more tender & flavorful steak Image
11/Both of these processes—letting proteins out of cells & decreasing water content—will increase the protein density.

More protein means higher T1 signal.

This contributes to giving subacute hematomas a very bright signal on T1. Image
12/Although more protein from the aging process leads to high T1, high T1 comes also from new electrons from the oxidation to methemoglobin.

I just remember that using Meth is basically a way to age humans like dry aging a steak

So Meth(emoglobin) will lead to increased T1. Image
13/Here are examples of subacute blood on MRI.

You can see these hematomas are only subtly bright on CT now, as their acute clots have begun to be broken down.

On MRI, these have increased T1 signal related to the increased protein and increased Meth. Image
14/Chronic blood is after a few weeks. In the subacute phase, cells lyse. In the chronic phase, the proteins themselves lyse, including heme. This releases the iron from the heme.

The iron molecules from the broken heme start to clump together to make ferritin or hemosiderin. Image
15/Neither T1 or T2 sequences like metal like ferritin/hemosiderin.

You can remember this bc metal doesn’t mix well with protein (metal cuts right through protein) or water (together water and iron make rust). Image
16/Bc neither T1 or T2 like ferritin/hemosiderin, you will end up getting a dark signal on both sequences in the chronic phase.

In fact, no sequence really likes hemosiderin, and it will be dark on all sequences. Image
17/Here’s an example of a chronic hematoma.

Six years ago, it looked like an acute hematoma—isointense on T1 (Even though there is a lot of fluid in the acute blood, there are also some proteins to give some signal).

Now it is dark on T1, bc everyone hate hemosiderin. Image
18/So remember: acute is a few hours, subacute is a few days, & chronic is a few weeks.

Acute blood is like flowing blood but outside the vessel.

Subacute blood has started oxidation & cell lysis

Chronic blood has broken down everything so that even iron is out on its own Image
19/Knowing what acute, subacute, and chronic blood consist of can help you to remember your T1 signal:

Acute is fluid w/little protein = isointense

Subacute has lots of protein from cell lysis & water loss & methemoglobin = bright

Chronic is filled w/iron no one likes = dark Image
20/T1 feels about blood like you feel about a good steak.

Acute is raw meat—has potential, but you won’t eat it yet = isointense.

Subacute has freed all the proteins for good taste, you want to dig in = bright.

Chronic has broken down too much & is rotten—no thanks = dark. Image
21/Of course, there are subtleties to this related to oxygen tension, blood flow to the region, hematocrit, etc. But as a rule of thumb, think of blood on T1 MRI like you would a good steak—bon apetit!

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Lea Alhilali, MD

Lea Alhilali, MD Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @teachplaygrub

Jun 27
1/Blast from the past!

Sometimes to be next gen, you gotta to go old school!

Cutting edge pituitary imaging must be MRI, right?

Or can we go back to the future w/CT?

Here’s the latest in pituitary imaging in this month’s @theAJNR SCANtastic!

ajnr.org/content/45/6/7…
Image
2/Pituitary imaging is actually very difficult.

First challenge is the small size of the gland & even smaller adenomas, requiring high resolution.

And the difference between adenomas & the gland is subtle—both enhance, but adenomas enhance SLIGHTLY less Image
3/The difference in enhancement is transient & ends quickly

So pituitary imaging must be done dynamically to catch this small window of difference

So we have to do very high resolution imaging very quickly—the worst of both worlds! Image
Read 12 tweets
Jun 21
1/”I LOVE spinal cord syndromes!” is a phrase that has NEVER, EVER been said by anyone.

Do you become paralyzed when you see cord signal abnormality?

Never fear—here is a thread on all the incomplete spinal cord syndromes to get you moving again! Image
2/Spinal cord anatomy can be complex.

On imaging, we can see the ant & post nerve roots.

We can also see the gray & white matter.

Hidden w/in the white matter, however, are numerous efferent & afferent tracts—enough to make your head spin. Image
3/Lucky for you, for the incomplete cord syndromes, all you need to know is gray matter & 3 main tracts

Anterolaterally, spinothalamic tract (pain & temp). Posteriorly, dorsal columns (vibration, proprioception, & light touch), & next to it, corticospinal tracts—providing motor Image
Read 20 tweets
Jun 19
1/”Tell me where it hurts.”

How back pain radiates can tell you where the lesion is—if you know where to look!

Remembering lumbar radicular pain distributions can be back breaking work--but here's a thread to help you! Image
2/Let’s start with L1.

L1 radiates to the groin.

I remember that b/c the number 1 is, well, um…phallic.

So the phallic number 1 radiates to the groin. Image
3/Let’s skip to L3 for a second.

I remember L3 is to the knee—easy, it rhymes! Image
Read 8 tweets
Jun 10
1/Do you know all the aspects of, well, ASPECTS?

Many know the anterior circulation stroke system—but posterior circulation (pc) ASPECTS is often left behind

25% of infarcts are posterior circulation

Do you know pc-ASPECTS?!

Here’s a thread to help you remember pc-ASPECTS Image
2/Many know anterior circulation ASPECTS.

It uses a 10-point scoring system to semi-quantitation the amount of the MCA territory infarcted on non-contrast head CT

If you need a review: here’s my thread on ASPECTS:
Image
3/But it’s only useful for the anterior circulation.

Posterior circulation accounts for ~25% of infarcts

Even w/recanalization, many of these pts do poorly bc of the extent of already infarcted tissue

So there’s a need to quantitate the amount of infarcted tissue in these pts Image
Read 8 tweets
May 29
1/Waving the white flag when it comes to white matter anatomy?

Turns out white matter anatomy isn’t black & white!

This months @theAJNR SCANtastic is the white knight you need to rescue you!

Here’s the white matter anatomy you NEED to know!

ajnr.org/content/45/5/5…
Image
2/Gray matter or cortical functional anatomy is well known.

Everyone knows the motor & sensory strips. Most know Broca’s & Wernicke’s

But most forget that white matter has similar functional topography & just bc it’s white matter doesn’t mean it doesn’t have function! Image
3/But too often we don’t refer to this white matter functional anatomy.

Instead we use general terms like “corona radiata”

But that’s the equivalent of using the word “body.”

Just like the body has many different systems in it, so does the corona radiata! Image
Read 12 tweets
May 21
1/Having trouble remembering what you should look for in vascular dementia on imaging?

Almost everyone worked up for dementia has infarcts. Which ones are important?

Here’s a thread on the key findings in vascular dementia! Image
2/Vascular cognitive impairment, or its most serious form, vascular dementia, used to be called multi-infarct dementia.

It was thought dementia directly resulted from brain volume loss from infarcts, w/the thought that 50-100cc of infarcted related volume loss caused dementia Image
3/But that’s now outdated. We now know vascular dementia results from diverse pathologies that all share a common vascular origin.

It’s possible to lose little volume from infarct & still result in dementia.

So if infarcts are common—which contribute to vascular dementia? Image
Read 21 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(