Bojan Tunguz Profile picture
Dec 3 6 tweets 3 min read
PyTorch 2.0 is out! This major release upgrade brings about many new features, but the main improvements are under the hood.

1/6 Image
The three main principles behind PyTorch

1. High-Performance eager execution
2. Pythonic internals
3. Good abstractions for Distributed, Autodiff, Data loading, Accelerators, etc.

PyTorch 2.0 is fully backward compatible with the previous versions of PyTorch.

2/6
The main new feature is torch.compile, "a feature that pushes PyTorch performance to new heights and starts the move for parts of PyTorch from C++ back into Python."

3/6
This new feature can bring about 1.5 - 2.0X improvements in training times when tested on the newer server class NVIDIA GPUs.

4/6
The efficiency tests have been done on the following tasks:

* 46 models from HuggingFace Transformers
* 61 models from TIMM: a collection of state-of-the-art PyTorch image models by Ross Wightman
* 56 models from TorchBench: a curated set of popular code-bases

5/6

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Bojan Tunguz

Bojan Tunguz Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @tunguz

Dec 5
Last week @OpenAI released ChatGPT - a Large Language AI Model that interacts with users in a natural conversational way. The chatbot is able to answer complex questions, even in highly technically demanding categories.

1/7 Image
It is also able to answer the follow up question, backtrack on wrong assumptions, and provide other detailed resources, including code fragments.

2/7
Most people in tech consider this to be the greatest technological advancement of the year. Many of us consider it even more epochal, perhaps one of the biggest turning points in history.

3/7
Read 7 tweets
Oct 10
Decision trees based Machine Learning models are some of the best performant algorithms in eras of predictive capability, especially on small and heterogenous datasets.

1/4
They also provide an unparalleled level of interpretability compared to all other non-linear algorithms. However, they are very hard to optimize on Von Neumann architecture machines due to their non-uniform memory access patterns.

2/4
In groundbreaking work published in Nature Communications a team of researchers has shown that analog content addressable memory (CAM) devices with in-memory calculation can dramatically accelerate tree-based model inference, as much as 10**3 over the conventional approaches 3/4
Read 4 tweets
Oct 8
This past week I came across another paper that purports to get the SOTA for NNs for tabular data. Due to the extreme penchant for exaggeration in this community, I have given up on checking most of these claims, but decided to take a look at this particular work.

1/6 Image
I decided to check how does XGBoost *really* perform on the datasets used in the paper, and the results were not pretty.

2/6
The main takeaway: for all three datasets used in the paper, the reported performance of XGBoost was widely inaccurate and the real performance was much better than their best results.

3/6
Read 6 tweets
Oct 1
This week @NVIDIA open sourced the 3D object generation AI model, GET3D. GET3D is a generative model of high quality 3D textured shapes learned from images.

1/4
Trained using only 2D images, GET3D generates 3D shapes with high-fidelity textures and complex geometric details.

2/4
These 3D objects are created in the same format used by popular graphics software applications, allowing users to immediately import their shapes into 3D renderers and game engines for further editing.

3/4
Read 4 tweets
Sep 29
I have just done something really cool - I've managed to *train* XGBoost in browser completely within an HTML file! This has been possible thanks to the PyScript project that allows running Python inside of HTML, similar to how JavaScript works.

trainxgb.com

1/5 Image
The example below is very simple - the script loads the small Iris dataset from sklearn. With a slider you are able to adjust the number of XGBoost trees, and the script will train different XGBoost models accordingly and print out accuracy.

2/5
PyScript is still in very early stages of development. Getting all the relevant components to work together is still tricky, and there are not many detailed tutorials. Hence, this example is *very* rudimentary. I'll try to make it more powerful and snazzy does the road.

3/5
Read 5 tweets
Sep 20
All right, here is one trick for using XGBoost for *data analysis*.

1/5
First, you create a simple model with XGBoost. It doesn't have to be fancy, or even too accurate, it's just for reference purposes. Use that model to calculate the Shapley values for your training set. Here is an example:

kaggle.com/code/tunguz/tp…

2/5
Next, use those Shapley values for some simple clustering, dimensionality reduction and visualization:

kaggle.com/code/tunguz/tp…

3/5
Read 5 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us on Twitter!

:(