2/In the lumbar spine, it is all about the degree of canal narrowing & room for nerve roots. In the cervical spine, we have another factor to think about—the cord. Cord integrity is key. No matter the degree of stenosis, if the cord isn’t happy, the patient won’t be either
3/Cord flattening, even w/o canal stenosis, can cause myelopathy. No one is quite sure why. Some say it’s b/c mass effect on static imaging may be much worse in dynamic positions, some say it’s repetitive microtrauma, & some say micro-ischemia from compression of perforators
4/Let’s start w/canal stenosis. Measurements have been proposed (<10mm), but this is cumbersome & introduces reader variability. Think functionally. Cord swims in CSF, like a fish in water. Like a fish, it needs room to swim. How much room is in the fish bowl determines stenosis
5/Mild stenosis is when your fish bowl decorations take up 1 side of the bowl. Not great, but fish can still swim. Moderate means your decorations take up both sides—swimming is really affected. Severe means you went all out w/decorations & there isn’t any more room for the fish
6/The sides of the fish bowl are the ventral & dorsal CSF. So mild canal stenosis is when either the ventral or dorsal CSF is effaced, but the other side of the fish bowl is still empty. Not ideal, but the fish can still swim
7/For moderate canal stenosis, both sides of the fish bowl have been filled. So both the ventral and dorsal CSF have been effaced. Now the room to swim has been notably limited
8/Finally, in severe canal stenosis, the bowl is completely filled and no CSF is seen. There is no room for the fish in this scenario. Similarly, there is no room for the cord and it is compressed. Not only is there no swimming, the fish has been crushed.
9/This classification is to all other classifications like a goldfish is to all other pets—super easy & simple. It’s also evidence based. It's the Muhle classification. It has excellent reproducibility. It hasn’t been correlated w/pain, but it's been correlated w/SSEP & outcomes
10/But canal stenosis isn’t enough. Cord flattening can cause myelopathy regardless of degree canal stenosis. It’s like being punched in the face—no matter how far away the hit comes from, it still hurts. Cord flattening is like being punched—it hurts even in mild stenosis
11/Think of the canal like a parking space. Even if no one encroaches on your space, if someone opens their door & dings your car, your car is still damaged and you are still mad. Your parking space may still be wide open, but you still have a nick in your door.
12/Cord flattening has 3 degrees. Either it’s not there, there, or so bad it causes cord damage. Think of it like a fight. Cord deformity w/o signal is like someone pushing you to start a fight---you can still walk away. Cord deformity w/signal is a punch to the face—it’s on!
13/Here are examples:
Cord deformity w/o signal (Grade 2, someone pushing and trying to start something)
Deformity w/cord signal (Grade 3, fight has already started & the cord already has a black eye!)
14/Remember, this is independent of the degree of canal stenosis. You can have cord deformity and signal even in lesser degrees of canal stenosis. Remember--cord flattening can cause cord damage regardless of the degree of canal stenosis.
15/This is the Kang system, and it was created to bring the idea of cord flattening into the rating of cervical spine stenosis, since flattening/deformity contribute to myelopathy regardless of stenosis.
16/Why don’t we just use the Kang & forget Muhle? Well, the problem w/Kang is that if there’s no cord signal, many degrees of canal stenosis are equal. Here, both mild stenosis w/flattening & severe stenosis w/flattening are equal in Kang, but clearly one is much more at risk
17/So we use both. For every level, we rate the degree of canal stenosis according to Muhle & the degree of cord flattening according to Kang. Remember—there is no perfect classification system. Sometimes you need combine.
18/So remember both canal and cord matter in the cervical region! Degree of stenosis is important, but even w/o it, cord flattening can have you swimming w/the fishes. So hopefully, you will take to these rating systems like a fish to water!
• • •
Missing some Tweet in this thread? You can try to
force a refresh
If you don’t know the time of stroke onset, are you able to deduce it from imaging?
Here’s a thread to help you date a stroke on MRI!
2/Strokes evolve, or grow old, the same way people evolve or grow old.
The appearance of stroke on imaging mirrors the life stages of a person—you just have to change days for a stroke into years for a person
So 15 day old stroke has features of a 15 year old person, etc.
3/Initially (less than 4-6 hrs), the only finding is restriction (brightness) on diffusion imaging (DWI).
You can remember this bc in the first few months, a baby does nothing but be swaddled or restricted. So early/newly born stroke is like a baby, only restricted
1/”I LOVE spinal cord syndromes!” is a phrase that has NEVER, EVER been said by anyone.
Do you become paralyzed when you see cord signal abnormality?
Never fear—here is a thread on all the incomplete spinal cord syndromes to get you moving again!
2/Spinal cord anatomy can be complex. On imaging, we can see the ant & post nerve roots. We can also see the gray & white matter. Hidden w/in the white matter, however, are numerous efferent & afferent tracts—enough to make your head spin.
3/Lucky for you, for the incomplete cord syndromes, all you need to know is gray matter & 3 main tracts. Anterolaterally, spinothalamic tract (pain & temp). Posteriorly, dorsal columns (vibration, proprioception, & light touch), & next to it, corticospinal tracts—providing motor
1/Do you get a Broca’s aphasia trying remember the location of Broca's area?
Does trying to remember inferior frontal gyrus anatomy leave you speechless?
Don't be at a loss for words when it comes to Broca's area
Here’s a 🧵to help you remember the anatomy of this key region!
2/Anatomy of the inferior frontal gyrus (IFG) is best seen on the sagittal images, where it looks like the McDonald’s arches.
So, to find this area on MR, I open the sagittal images & scroll until I see the arches. When it comes to this method of finding the IFG, i’m lovin it.
3/Inferior frontal gyrus also looks like a sideways 3, if you prefer. This 3 is helpful bc the inferior frontal gyrus has 3 parts—called pars
1/Need help reading spine imaging? I’ve got your back!
It’s as easy as ABC!
A thread about an easy mnemonic you can use on every single spine study you see to increase your speed & make sure you never miss a thing!
2/A is for alignment
Look for: (1) Unstable injuries
(2) Malalignment that causes early degenerative change. Abnormal motion causes spinal elements to abnormally move against each other, like grinding teeth wears down teeth—this wears down the spine
3/B is for bones.
On CT, the most important thing to look for w/bones is fractures. You may see focal bony lesions, but you may not
On MR, it is the opposite—you can see marrow lesions easily but you may or may not see edema associated w/fractures if the fracture is subtle