2/ICA is like a staircase—winding up through important anatomic regions like a staircase winding up to each floor
Lobby is the neck. First floor is skullbase/carotid canal. Next it stops at the cavernous sinus, before finally reaching the rooftop balcony of the intradural space
3/ICA is divided into numbered segments based on landmarks that denote transitions on its way up the floors.
C1 is in the lobby or neck.
You can remember this b/c the number 1 looks elongated & straight like a neck
4/C2 is the petrous or horizontal segment. This is where the ICA gets to the next floor, the skullbase
I remember this b/c the ICA makes a curve forward here, like a swan’s neck--and number 2 has a forward, swan like curve that looks just like the curve of the petrous segment
5/C3 is the lacerum segment—from above foramen lacerum to petrolingual ligament.
It’s easy to remember b/c lacerum comes from the latin word for torn (b/c foramen lacerum is irregular like a tear or laceration)
Number 3 zig zags like a laceration or torn edge, so C3 = lacerum
6/C4 is the cavernous segment
Cavernous segment has the anterior genu. Here, the ICA makes a curve back, so it looks like a knee (genu is latin for knee)
You can remember C4 is cavernous bc the number 4 has a curve back like the anterior genu of the cavernous ICA, like a knee
7/C5 is the clinoid segment—at the ant. clinoid process
Clinoid process gets its name from its sloped shape. It’s from the same latin root as recline (CLIN)
And we all take a break (take five some might say😉) by sitting back or reclining
Take FIVE & reCLINE. C5 is CLINoid
8/C6 is the ophthalmic segment.
I remember this b/c the circle of the number 6 looks like eyes and its curve looks like eyebrows.
So 6 is an eye = ophthalmic
9/C7 is the communicating or terminal segment
You can remember this bc the number 7 looks like the ICA ending & giving off the PCOMM
The number 7 has the shape of a turn off right before the road ends—& the ICA gives off the PCOMM in its C7 segment right before terminating
10/Now you can remember all the segments of the ICA!
Hopefully this will help you to be precise in your localization and siphon away the term “carotid siphon”!!
• • •
Missing some Tweet in this thread? You can try to
force a refresh
3/At its most basic, you can think of the PPF as a room with 4 doors opening to each of these regions: one posteriorly to the skullbase, one medially to the nasal cavity, one laterally to the infratemporal fossa, and one anteriorly to the orbit
1/My hardest thread yet! Are you up for the challenge?
How stroke perfusion imaging works!
Ever wonder why it’s Tmax & not Tmin?
Do you not question & let RAPID read the perfusion for you? Not anymore!
2/Perfusion imaging is based on one principle: When you inject CT or MR intravenous contrast, the contrast flows w/blood & so contrast can be a surrogate marker for blood.
This is key, b/c we can track contrast—it changes CT density or MR signal so we can see where it goes.
3/So if we can track how contrast gets to the tissue (by changes in CT density or MR signal), then we can approximate how BLOOD is getting to the tissue.
And how much blood is getting to the tissue is what perfusion imaging is all about.
1/”That’s a ninja turtle looking at me!” I exclaimed. My fellow rolled his eyes at me, “Why do I feel I’m going to see this a thread on this soon…”
He was right! A thread about one of my favorite imaging findings & pathology behind it
2/Now the ninja turtle isn’t an actual sign—yet!
But I am hoping to make it go viral as one. To understand what this ninja turtle is, you have to know the anatomy.
I have always thought the medulla looks like a 3 leaf clover in this region.
The most medial bump of the clover is the medullary pyramid (motor fibers).
Next to it is the inferior olivary nucleus (ION), & finally, the last largest leaf is the inferior cerebellar peduncle.
Now you can see that the ninja turtle eyes correspond to the ION.
3/But why are IONs large & bright in our ninja turtle?
This is hypertrophic olivary degeneration.
It is how ION degenerates when input to it is disrupted. Input to ION comes from a circuit called the triangle of Guillain & Mollaret—which sounds like a fine French wine label!