2/On coronal MRI sequences, the brainstem in the region of the facial nerve looks like a bodybuilder.
But it looks like one of those body builders who concentrates only on upper body workouts, so they are huge up top (the pons) & but have chicken legs (the medulla)
3/Facial nerve comes out in this region from between the pons & medulla.
It looks like a weightlifting belt, coming out from the waist between the giant pons upper body & the medulla chicken legs
4/Intracranial segments of the facial nerve follow the stages of life.
To begin, you are born. So is the facial nerve.
It leaves the pons at the root exit point—just as you exit your mother’s womb at birth
5/Next is the attached segment. This is the next stage of life
Just like after birth, you are very attached to your mother in childhood, so too is the facial nerve “attached” to the pons after its birth, like a little kid
It runs closely along the pons undersurface at first
6/Next stage of life is when you must finally leave the safety of clinging to your parents
So too must the facial nerve leave the undersurface of the pons. This is called the root detachment point
You can remember this b/c most teenagers are very cool & “detached” at this age
7/Next is stage of life is transitional.
After leaving for college, you’re not quite independent—you still go home & do your laundry & beg for money! So it’s a “transitional zone” for you
Same for facial nerve—initially it’s “transitional” between central & peripheral myelin
8/Finally is the cisternal segment. This is the stage of life when you’re finally mature & go out on your own
Same for the facial nerve. It’s left the central myelin of its pontine mama behind & is now fully peripheral myelin. It’s ready to go out & meet CN VIII in the IAC
9/The full course of the facial nerve is best seen on coronal images
On the axial images, you can see the portions after it has left the pons (root detachment point, transitional zone & cisternal segment)
You can’t see more proximally b/c this is covered by the pons on axials
10/It’s important to know this anatomy so you can look for compression of the facial nerve in this region.
Most often it’s compression from a vessel (microvascular compression).
Microvascular compression can lead to hemifacial spasm
11/This is most common in the transitional zone b/c central myelin is vulnerable & here central myelin is out in the cistern
It’s like how kids are most likely to get into trouble in the college years—b/c you’re still a kid, but now exposed to more temptations/real world danger
12/You can see compression of the transitional zone on the axial images b/c the transitional zone is after the nerve has left from under the pons
So always look for vessels compressing the nerve right next to pons—like bad influences bringing you trouble during the college years
13/Besides the college years, the next most common time to get into trouble is your childhood. Same w/the facial nerve
Next most common place for microvascular compression is the attached segment. Even though its under the roof of its pontine mama, it can still get punched
14/But you can’t see this area on axial images b/c it’s hidden under the pons!
Most common cause of a failed decompression is that transitional zone compression is relieved but attached segment compression is missed
So always check coronals for attached segment compression!
15/So now you know the intracranial facial nerve by remembering how its segments follow the stages of life—& you know where to look for compression by remembering which stages of life are vulnerable to trouble
Hopefully this will keep you out of trouble w/facial nerve anatomy!
• • •
Missing some Tweet in this thread? You can try to
force a refresh
If you don’t know the time of stroke onset, are you able to deduce it from imaging?
Here’s a thread to help you date a stroke on MRI!
2/Strokes evolve, or grow old, the same way people evolve or grow old.
The appearance of stroke on imaging mirrors the life stages of a person—you just have to change days for a stroke into years for a person
So 15 day old stroke has features of a 15 year old person, etc.
3/Initially (less than 4-6 hrs), the only finding is restriction (brightness) on diffusion imaging (DWI).
You can remember this bc in the first few months, a baby does nothing but be swaddled or restricted. So early/newly born stroke is like a baby, only restricted
1/”I LOVE spinal cord syndromes!” is a phrase that has NEVER, EVER been said by anyone.
Do you become paralyzed when you see cord signal abnormality?
Never fear—here is a thread on all the incomplete spinal cord syndromes to get you moving again!
2/Spinal cord anatomy can be complex. On imaging, we can see the ant & post nerve roots. We can also see the gray & white matter. Hidden w/in the white matter, however, are numerous efferent & afferent tracts—enough to make your head spin.
3/Lucky for you, for the incomplete cord syndromes, all you need to know is gray matter & 3 main tracts. Anterolaterally, spinothalamic tract (pain & temp). Posteriorly, dorsal columns (vibration, proprioception, & light touch), & next to it, corticospinal tracts—providing motor
1/Do you get a Broca’s aphasia trying remember the location of Broca's area?
Does trying to remember inferior frontal gyrus anatomy leave you speechless?
Don't be at a loss for words when it comes to Broca's area
Here’s a 🧵to help you remember the anatomy of this key region!
2/Anatomy of the inferior frontal gyrus (IFG) is best seen on the sagittal images, where it looks like the McDonald’s arches.
So, to find this area on MR, I open the sagittal images & scroll until I see the arches. When it comes to this method of finding the IFG, i’m lovin it.
3/Inferior frontal gyrus also looks like a sideways 3, if you prefer. This 3 is helpful bc the inferior frontal gyrus has 3 parts—called pars
1/Need help reading spine imaging? I’ve got your back!
It’s as easy as ABC!
A thread about an easy mnemonic you can use on every single spine study you see to increase your speed & make sure you never miss a thing!
2/A is for alignment
Look for: (1) Unstable injuries
(2) Malalignment that causes early degenerative change. Abnormal motion causes spinal elements to abnormally move against each other, like grinding teeth wears down teeth—this wears down the spine
3/B is for bones.
On CT, the most important thing to look for w/bones is fractures. You may see focal bony lesions, but you may not
On MR, it is the opposite—you can see marrow lesions easily but you may or may not see edema associated w/fractures if the fracture is subtle