BIG NEWS: #ChatGPT breaks #Python vs #R Barriers in Data Science!

Data science teams everywhere rejoice.

A mind-blowing thread (with a FULL chatgpt prompt walkthrough). 🧵

#datascience #rstats
It's NOT R VS Python ANYMORE!

This is 1 example of how ChatGPT can speed up data science & GET R & PYTHON people working together.

(it blew my mind)
This example combines #R, #Python, and #Docker.

I created this example in under 10 minutes from start to finish.
I’m an R guy.

And I prefer doing my business research & analysis in R.

It's awesome. It has:

1. Tidyverse - data wrangling + visualization
2. Tidymodels - Machine Learning
3. Shiny - Apps
But the rest of my team prefers Python.

And they don't like R... it's just weird to them.

So I wanted to see if I could show them how we could work together...
Let’s start with a prompt.

I asked chatgpt to find a data set that I used for this example. Image
...ChatGPT found it... Image
... And gave me this code to read the data... Image
I prefer the tidyverse, so I asked Chatgpt to update the code. Image
That looks better. Image
With the data in hand, it’s time for some Data Science.

I asked this simple question. Image
ChatGPT's response was impressive. Image
But, even though I’m an R guy, my team uses Python for Deployment…

In the past, that’s a huge problem.

(resulting in days of translations from R to Python with Google and StackOverflow)
But now, that’s 1 minute of effort with chatGPT.

Can I show you?
I asked chatgpt to convert the R script to python... Image
And in 10 seconds chatgpt made this python code with pandas and scikit learn. Image
ChatGPT did in 10 seconds something that would have taken me 2 hours.

But let’s continue.

The reason we had to convert to Python is for “deployment”

Deployment is just a fancy word for allowing others to access my model so they can use it on-demand.
So I asked chatGPT this: Image
And ChatGPT made me a Python API using FastAPI. Image
But this code is useless…

… Without a docker environment.

So I asked chatGPT to make one: Image
And chatGPT delivered my Docker Environment's Dockerfile: Image
So in under 10 minutes, I had ChatGPT:

1. Make my research script in R.

2. Create my production script in Python for my Team

3. And create the API + Docker File to deploy it.
But when I showed my Python team, instead of excited...

...They were worried.

And I said, "Listen. There's nothing to be afraid of."

"ChatGPT is a productivity enhancer."

They didn't believe me.
My Conclusion:

You have a choice. You can rule AI.

Or, you can let AI rule you.

What do you think the better choice is?
If you want help, I'd like you to join me on a free #ChatGPT for #DataScientists Workshop on April 26th. And I will help you Rule AI.

What's the next step?

👉Register Here: us02web.zoom.us/webinar/regist… Image

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with 🔥 Matt Dancho (Business Science) 🔥

🔥 Matt Dancho (Business Science) 🔥 Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @mdancho84

Oct 22
How to build AI agents:

A great cheat sheet (bookmark for later).

Here's how to use it: Image
1️⃣ System Prompt: Define your agent’s role, capabilities, and boundaries. This gives your agent the necessary context.

2️⃣ LLM (Large Language Model): Choose the engine. GPT-5, Claude, Mistral, or an open-source model — pick based on reasoning needs, latency, and cost.
3️⃣ Tools - Equip your agent with tools: API access, code interpreters, database queries, web search, etc. More tools = more utility. Max 20.

4️⃣ Orchestration: Use frameworks (like LangChain, AutoGen, CrewAI) to manage reasoning, task decomposition, and multi-agent collaboration.
Read 7 tweets
Oct 20
Understanding P-Values is essential for improving regression models.

In 2 minutes, I'll crush your confusion. Image
1. The p-value:

A p-value in statistics is a measure used to assess the strength of the evidence against a null hypothesis.
2. Null Hypothesis (H₀):

The null hypothesis is the default position that there is no relationship between two measured phenomena or no association among groups. For example, under H₀, the regressor does not affect the outcome.
Read 15 tweets
Oct 20
Understanding probability is essential in data science.

In 4 minutes, I'll demolish your confusion.

Let's go! Image
1. Statistical Distributions:

There are 100s of distributions to choose from when modeling data. Choices seem endless. Use this as a guide to simplify the choice. Image
2. Discrete Distributions:

Discrete distributions are used when the data can take on only specific, distinct values. These values are often integers, like the number of sales calls made or the number of customers that converted.
Read 13 tweets
Oct 18
Top 10 Python Libraries for Generative AI You Need to Master in 2025

(The tools behind document agents, intelligent assistants, and next-gen interfaces.)

Everything you need to know: 🧵 Image
1. LangChain

The backbone of intelligent LLM apps.

Build agents that:
✅ Reason
✅ Use tools
✅ Remember conversations
✅ Access APIs

If you're building anything with GPTs, LangChain is your starting point.

langchain.com
2. LangGraph

LangChain + DAGs = LangGraph.

It powers:
- Multi-agent workflows
- Conditional logic
- Real-time state management

If you're serious about production AI agents, this is a must.
langgraph.dev
Read 15 tweets
Oct 13
🚨BREAKING: New Python library for agentic data processing and ETL with AI

Introducing DocETL.

Here's what you need to know: Image
1. What is DocETL?

It's a tool for creating and executing data processing pipelines, especially suited for complex document processing tasks.

It offers:

- An interactive UI playground
- A Python package for running production pipelines Image
2. DocWrangler

DocWrangler helps you iteratively develop your pipeline:

- Experiment with different prompts and see results in real-time
- Build your pipeline step by step
- Export your finalized pipeline configuration for production use Image
Read 8 tweets
Oct 12
Stop doing Customer Segmentation with plain vanilla Scikit Learn.

Add these 7 Python libraries to your RFM, clustering, and
customer segmentation projects: Image
1. Data preparation

- load data with pandas
- impute/mask with Feature-engine

Website: feature-engine.trainindata.com/en/latest/inde…Image
2. Feature creation:

- derive recency/frequency/monetary features
- Use rfm or Lifetimes

Github: github.com/sonwanesuresh9…Image
Read 8 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(