Lea Alhilali, MD Profile picture
Apr 21, 2023 21 tweets 9 min read Read on X
1/Don’t let all your effort be in VEIN!

Developmental venous anomalies (DVAs) are often thought incidental but ignore them at your own risk!

A #tweetorial about how to know when DVAs are the most important finding

#meded #medtwitter #neurorad #neurotwitter #radtwitter #radres Image
2/DVAs aren’t hard to recognize on imaging—they have a typical “caput medusae” appearance.

Dilated medullary veins look like snakes all converging into the medusa head of a large draining vein. Image
3/DVAs are incredibly common—1 in 50 may have one

Although >90% are asymptomatic, that would still results in a relatively large number of patients w/symptoms

Also, w/increasing knowledge of DVA physiology, we may find they’re responsible for more symptoms than we realize Image
4/What causes a DVA to form? First you must understand normal venous drainage before you can understand its anomalies

Medullary veins drain the white matter & can either drain deep into subependymal veins or into superficial medullary veins & into the superficial venous system Image
5/DVAs form when normal drainage for a medullary vein doesn’t form or regresses.

The medullary veins from the opposite drainage system (either superficial or deep) swoop in like a super hero to try to save that territory, by taking over its drainage—and forming a DVA Image
6/Think of it like the morning after the party. Someone’s gotta clean up the mess & drain it away.

A DVA is what happens when the normal people responsible for cleaning up bail & some poor sucker is left cleaning up everything, even if it wasn’t his mess. Image
7/This is why DVAs always drain the opposite of what you would expect (ie, deep white matter drains superficial, superficial white matter drains deep) bc the normal drainage bailed on that white matter & a DVA was left to clean up an area that wasn’t even its mess. Image
8/But obviously having 1 person do all the cleaning when it was meant for multiple people is not efficient & can overwhelm the person doing the cleaning

Same w/DVAs—they can be overwhelmed & have venous hypertension. This causes gliosis/T2 signal around it & can cause headache Image
9/Venous hypertension can also affect neurological function in the region.

Poor venous drainage is like a bathtub that doesn’t drain well—stagnant water isn’t going to clean you well.

Same w/venous hypertension—region isn’t going to function well, w/hypometabolism on PET Image
10/DVAs are not prepared to handle the extra flow. Remember, the draining stem was only expecting to handle drainage from its own medullary vein.

Making it responsible for medullary veins that should have been drained elsewhere is like turning the faucet on high Image
11/This increased flow impacts the DVA itself. It results in more pressure on the wall of the vein, resulting wall damage & thickening.

This wall damage/thickening makes DVAs more susceptible to stenoses, slow flow, & occlusions than normal veins Image
12/Increased wall pressure is like the wall receiving a punch

So you can imagine if you are punched over & over, that might make it so you don’t want to let people in—and you might close off entirely! No wonder these may thrombose! Image
13/DVAs are also associated w/cerebral cavernous malformations or CCMs.

CCMs & DVAs go together like peas & carrots—as many as 1/3rd of CCMs have DVAs.

CCMs are prone to bleed. Many bleeds previously thought from DVAs were from associated CCMs. Why is there an association? Image
14/There are two theories.

First, is the hemodynamic theory.

CCM is actually a response to the parenchymal injury that comes from chronic venous hypertension & the DVA not being able to carry its flow. This results in release of angiogenetic factors as a response to injury Image
15/Like a new baby, new vessels formed are more easily injured & then bleed

Bleeds result in more repair—like a baby crying results in parents fixing what's wrong

This spoils a baby, who's more likely to cry again. More new/weak vessels means CCM is more likely to bleed again Image
16/Second theory is the two genetic hit theory.

Mutations in the PIK3CA gene can cause DVA formation.

But like having a drink before a fight—the mutation also makes you vulnerable to a second hit.

A 2nd mutation of another gene combined w/PIK3CA can cause a CCM to form Image
17/DVAs can also cause symptoms from mass effect.

DVAs can become large bc they drain a large territory.

B/c they are large, they can cause mass effect on the brain, cranial nerves, or even the ventricular system & cause hydrocephalus Image
18/When you’re overwhelmed & trying to clean up everything as fast as possible, you can accidentally pick up things that aren’t even trash & don’t need you to pick them up.

Same w/DVAs. They can pick up arterial flow & have microshunts or even AVMs—increasing risk of bleeding Image
19/DVAs are also associated w/seizures—from CCMs & cortical malformations (also associated w/DVAs). It’s unclear if the association is b/c PIK3CA also predisposes to cortical malformations, or if normal venous architecture is important scaffolding to guide cortical development Image
20/So before you write off a DVA as incidental, look for signs that it could be symptomatic, such as signs of venous hypertension (gliosis, stenosis, or microshunt) or for associated lesions such as CCMs or cortical malformations Image
21/Remember, they’re not INCIDENTAL Venous Anomalies—they represent true pathology & you should be sure they don’t have abnormalities that may make them symptomatic before you write them off.

Remember, it’s always incidental to you if you don’t understand its significance! Image

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Lea Alhilali, MD

Lea Alhilali, MD Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @teachplaygrub

Nov 4
1/The 90s called & wants its carotid imaging back!

It’s been 30 years--are you still on NASCET?

Feeling vulnerable about plaque vulnerability?

This month’s @theAJNR SCANtastic has what you need to know about carotid plaque

ajnr.org/content/46/10/…Image
2/Everyone knows the NASCET criteria:

If the patient is symptomatic & the greatest stenosis from the plaque is >70% of the diameter of normal distal lumen, patient will likely benefit from carotid endarterectomy

But that doesn’t mean the remaining patients are just fine! Image
3/Yes, carotid plaques resulting in high-grade stenosis are high risk

But assuming that stenosis is the only mechanism by which a carotid plaque is high risk is like assuming that the only way to kill someone is by strangulation. Image
Read 13 tweets
Oct 24
1/Having trouble remembering how to differentiate dementias on imaging?

Is looking at dementia PET scans one of your PET peeves?

Here’s a thread to show you how to remember the imaging findings in dementia & never forget! Image
2/The most common functional imaging used in dementia is FDG PET. And the most common dementia is Alzheimer’s disease (AD).

On PET, AD demonstrates a typical Nike swoosh pattern—with decreased metabolism in the parietal & temporal regions Image
3/The swoosh rapidly tapers anteriorly—& so does hypometabolism in AD in the temporal lobe. It usually spares the anterior temporal poles.

So in AD look for a rapidly tapering Nike swoosh, w/hypometabolism in the parietal/temporal regions—sparing the anterior temporal pole Image
Read 16 tweets
Oct 17
1/My hardest thread yet! Are you up for the challenge?

How stroke perfusion imaging works!

Ever wonder why it’s Tmax & not Tmin?

Do you not question & let RAPID read the perfusion for you? Not anymore! Image
2/Perfusion imaging is based on one principle: When you inject CT or MR intravenous contrast, the contrast flows w/blood & so contrast can be a surrogate marker for blood.

This is key, b/c we can track contrast—it changes CT density or MR signal so we can see where it goes. Image
3/So if we can track how contrast gets to the tissue (by changes in CT density or MR signal), then we can approximate how BLOOD is getting to the tissue.

And how much blood is getting to the tissue is what perfusion imaging is all about. Image
Read 18 tweets
Oct 15
1/”That’s a ninja turtle looking at me!” I exclaimed. My fellow rolled his eyes at me, “Why do I feel I’m going to see this a thread on this soon…”

He was right! A thread about one of my favorite imaging findings & pathology behind it Image
2/Now the ninja turtle isn’t an actual sign—yet!

But I am hoping to make it go viral as one. To understand what this ninja turtle is, you have to know the anatomy.

I have always thought the medulla looks like a 3 leaf clover in this region.

The most medial bump of the clover is the medullary pyramid (motor fibers).

Next to it is the inferior olivary nucleus (ION), & finally, the last largest leaf is the inferior cerebellar peduncle.

Now you can see that the ninja turtle eyes correspond to the ION.Image
3/But why are IONs large & bright in our ninja turtle?

This is hypertrophic olivary degeneration.

It is how ION degenerates when input to it is disrupted. Input to ION comes from a circuit called the triangle of Guillain & Mollaret—which sounds like a fine French wine label! Image
Read 9 tweets
Oct 13
1/Time to FESS up! Do you understand functional endoscopic sinus surgery (FESS)?

If you read sinus CTs, you better know what the surgeon is doing or you won’t know what you’re doing!

Here’s a thread to make sure you always make the important findings! Image
2/The first step is to insert the endoscope into the nasal cavity.

The first two structures encountered are the nasal septum and the inferior turbinate. Image
3/So on every sinus CT you read, the first question is whether there is enough room to insert the scope.

Will it go in smoothly or will it be a tight fit? Image
Read 19 tweets
Oct 10
1/I always say you can tell a bad read on a spine MR if it doesn’t talk about lateral recesses.

What will I think when I see your read? Do you rate lateral recess stenosis?

Here’s a thread on lateral recess anatomy & a grading system for lateral recess stenosis Image
2/First anatomy.

Thecal sac is like a highway, carrying the nerve roots down the lumbar spine.

Lateral recess is part of the lateral lumbar canal, which is essentially the exit for spinal nerve roots to get off the thecal sac highway & head out into the rest of the body Image
3/Exits have 3 main parts.

First is the deceleration lane, where the car slows down as it starts the process of exiting.

Then there is the off ramp itself, and this leads into the service road which takes the car to the roads that it needs to get to its destination Image
Read 21 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(