Recent research analyzed "future wildfires burned areas & C emissions under #SolarGeoengineering & Shared Socioeconomic pathways (SSPs) scenarios & assessed how the different geoengineering approaches impact #fires."
Results are discussed in a 🧵 below ⬇️:
1/13
The major conclusions and implications drawn from this study are as follows:
2/13
2️⃣ "By the end of the century, the two #geoengineering scenarios exhibit lower burned area and fire carbon emissions than not only their base-forcing scenario (SSP5-8.5) but also the targeted-forcing scenario (SSP2-4.5)."
4/13
Cont'd....
"The 40–70∘ N latitude band is the only latitude band in which the zonal mean burned area consistently increases under all of the scenarios, even the #geoengineering scenarios."
6/13
4️⃣ "Overall, changes in G6solar & #G6sulfur from SSP5-8.5 with respect to surface temperature, wind speed, and downwelling #SolarFlux at the surface are positively correlated to the changes in burned area and fire carbon emissions,....
7/13
Cont'd....
whereas their changes in precipitation, relative humidity, and soil water content are negatively correlated to the changes in burned area and fire #CarbonEmissions."
8/13
5️⃣ "Generally, the #StratosphericSulfateAerosols approach has a stronger fire-reducing effect than the #SolarIrradianceReduction approach. The impacts of the analyzed variable changes are generally larger (percent-wise) on burned area than fire carbon emissions."
9/13
6️⃣ "#Geoengineering-imposed reductions in surface temperature & wind speed & geoengineering-imposed increases in relative humidity & soil moisture reduce fires by the end of the century."
10/13
Cont'd...
"However, the reduction in precipitation resulting from #geoengineering offsets its overall fire-reducing effect to some extent."
11/13
Read open-access paper entitled: "Impact of solar geoengineering on wildfires in the 21st century in CESM2/WACCM6" here ⬇️ acp.copernicus.org/articles/23/54…
🚨🌲 New research reveals that even intact boreal forests, some of the planet’s strongest natural carbon sinks, lose their ability to absorb CO₂ as they age.
Here’s what the scientists found & why it matters for our climate models🧵1/9 #CarbonSink #CarbonRemoval
2/ Boreal forests cover vast regions across Canada, Russia, and Scandinavia and store enormous amounts of carbon in trees and soil.
They’re often seen as stable, long-term carbon sinks, but this study challenges that assumption with new global-scale data.
3/ Using seven global Net Ecosystem Productivity (NEP) datasets and a high-resolution forest age map, researchers tracked how C uptake changes as forests grow older.
They used a space-for-time substitution method, comparing forests of different ages to infer long-term trends.
🚨A major 6-country survey (N=5,310) finds Europeans support -ve emissions to meet climate goals, but strongly prefer nature-based solutions like afforestation over engineered options like Direct Air Capture. Trust hinges on benefits for nature & future generations.
🧵1/10 #CDR
2/ When allocating how to tackle emissions, respondents clearly prioritized immediate mitigation:
🚨A new study warns that efforts to cool the planet through stratospheric aerosol injection (#SAI) could face far greater challenges than models predict, from unpredictable monsoon shifts to material shortages & engineering limits, every step adds new risks.
🧵1/8 #SRM
2/ The authors explore both micro-level (engineering) and macro-level (governance & supply) factors that could restrict feasible deployment.
Key finding: these constraints could drastically raise costs, risks, and uncertainty, especially for “solid” (non-sulfate) aerosols.
3/ Traditional SAI uses sulfate aerosols (like volcanoes).
But alternatives, CaCO₃, TiO₂, Al₂O₃, ZrO₂, even diamond, promise less ozone damage.
Yet producing, aerosolizing, and dispersing these solids in submicron form is technically daunting.
🚨French Academy of Sciences has released a new report on #SolarGeoengineering, stressing that the absolute priority must remain reducing GHG emissions via structural changes & accelerating adaptation to climate impacts.
On #SRM, the report offers several recommendations:🧵1/6
2/ SRM Recommendation 1️⃣
Promote an international agreement aimed at prohibit any initiative, public or private, to deploy SRM, regardless of the framework or scale.
To do this, the entire scientific community will have to be involved.
3/ SRM Recommendation 2️⃣
Support & deepen research on climate, atmospheric physicochemical processes and biodiversity in order to be able to rigorously assess the potential & risks of SRM.