Lea Alhilali, MD Profile picture
May 26, 2023 13 tweets 8 min read Read on X
1/Time is brain! So you don’t have time to struggle w/that stroke alert head CT.
Here’s a #tweetorial to help you with the CT findings in acute stroke.

#medtwitter #FOAMed #FOAMrad #ESOC #medstudent #neurorad #radres #meded #radtwitter #stroke #neurology #neurotwitter Image
2/CT in acute stroke has 2 main purposes—(1) exclude intracranial hemorrhage (a contraindication to thrombolysis) & (2) exclude other pathologies mimicking acute stroke. However, that doesn’t mean you can’t see other findings that can help you diagnosis a stroke. Image
3/Infarct appearance depends on timing. In first 12 hrs, the most common imaging finding is…a normal head CT. However, in some, you see a hyperdense artery or basal ganglia obscuration. Later in the acute period, you see loss of gray white differentiation & sulcal effacement Image
4/Hyperdense artery sign occurs when you see the thrombus in the artery. The thrombus appears hyperdense bc clot is denser than normal flowing blood—& CT is just a measure of density. So an artery filled w/clot will be denser than arteries filled with flowing blood. Image
5/Bc the hyperdensity you are seeing is clot, there will not be flowing blood in this region on CTA. So the hyperdense artery will be the inverse of the CTA--where there is hyperdensity on non-contrast CT, there will be no density/contrast on CTA—like a negative of a photograph Image
6/The other sign in the first 12 hours is the blurred basal ganglia/lentiform nucleus. Usually this region is a triangle of low density white matter (ant limb internal capsule, post limb internal capsule, external capsule) surrounding the high density lentiform nucleus Image
7/In an acute infarct, this triangle becomes blurred, as the lentiform nucleus becomes more edematous, it becomes similar in density to white matter. So instead of clean line between white and gray matter, they look like they are smear together. Image
8/The lentiform nucleus is commonly infarcted bc it receives blood from the lenticulostriate arteries that come off of the M1, so unless there is an occlusion more distal in the MCA, the blood supply to the lentiform nucleus is cut off and it infarcts early. Image
9/Why do regions become low density when they infarct? This is bc when O2 & ATP run our, Na/K pump stops working & bc of the osmotic gradient, Na & H20 rush into the cell. More water in the cell = lower density. For every 1% increase in H20 there is a 2.5 HU decrease in density Image
10/This brings us to our next sign—hypodense regions of brain outside the basal ganglia. If the brain is low density, that means it has run out of ATP and swelled, which means the damage is irreversible. Low density = dead brain = poor prognostic sign. Image
11/Another region that infarcts early is the insula. This is bc the insula is actually an internal watershed in the MCA territory. It is the watershed between the lenticulostriates and the M2 sylvian branches, so it will infarct relatively early with low blood supply Image
12/Later you will get sulcal effacement. Normally, the brain should have lots of sulci that look like ice cracks/crevasses along its surface. As more water accumulates in the dead cells, more swelling occurs, and these crevasses become effaced by the swollen brain. Image
13/So now you know the 5 main signs of acute infarct on CT—remember, if you see these five, soon that brain won’t be alive! Image

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Lea Alhilali, MD

Lea Alhilali, MD Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @teachplaygrub

Sep 12
1/Do you feel there’s a back-log of findings in a spine MRI report?

Everyone talks about discs & facets, but not everyone talks about the endplates

Do you?

Do you need to talk about degenerative changes (Modic changes) of the endplates?

Here’s thread w/all you need to know! Image
2/Over 30 years ago, Modic et al. found there were 3 types of degenerative endplate changes:

(1) T2 bright changes (indicating edema, Modic 1)
(2) T1 bright changes (indicating fat, Modic 2)
(3) T1 & T2 dark changes (indicating sclerosis, Modic 3)

But what do they mean? Image
3/Let’s start w/Modic 1.

These are bright on T2, indicating edema

On pathology, it’s what you’d expect w/edema: inflammation, vascular granulation tissue, & high cellular turnover

Vascular granulation tissue means these can enhance on post contrast images—mimicking discitis! Image
Read 18 tweets
Sep 10
1/Are you FISHING for a way to better evaluate subarachnoid hemorrhage?

Are you hungry for a way to classify these patients?

Donut you worry!

Here’s a short thread to help you remember the modified Fisher scale for classifying subarachnoid hemorrhage. Image
2/Just think of the brain as a donut. Like a donut, it’s a bunch of stuff around a hole in the middle.

Ventricles are the hole in the middle of the brain just like there’s a hole in the middle of the dough in a donut.

Just don’t quote me to your neuroanatomy professor…. Image
3/Subarachnoid hemorrhage (SAH) added to the brain makes it less healthy, the same way adding toppings to a donut makes it less healthy.

Increasing severity of SAH is like increasingly unhealthy donut toppings. Fisher scale quantifies the vasospasm risk for increasing SAH Image
Read 8 tweets
Sep 8
1/Talk about twisting your back!

Do spine vascular lesions make your brain feel as tangled as the dilated vessels you see?

Want some more information on malformations?

Here’s a thread on spine vascular anatomy to give you durable knowledge on dural arteriovenous fistulas (dAVF)Image
2/To understand spinal dural AVFs, you need to understand basic spinal vascular anatomy.

The spine is LONG—to get blood from the top to the bottom is like going through the length of a marathon course Image
3/So we will need to tackle it like you tackle running a marathon.

When you run a marathon, you replenish yourself at aid/water stations along the way so you can make it all the way through.

Same w/spinal arterial vasculature—it needs to be replenished on the way down. Image
Read 19 tweets
Sep 3
1/Does the work up for dizziness make your head spin?

Wondering what to look for on an MR for dizziness

This month’s @theAJNR SCANtastic will tell you all you need about imaging Meniere’s disease!

ajnr.org/content/46/8/1…Image
@TheAJNR 2/The etiology for dizziness can have very diverse causes—each with very different treatments.

So it is important to try to differentiate

Meniere’s is a common cause & we can help diagnose it w/imaging! Image
@TheAJNR 3/To understand Meniere’s disease, you must know labyrinth anatomy

It has layers, like Russian nesting dolls. Outer doll is the bony labyrinth, holding perilymph & a second doll—membranous labyrinth.

Inside the membranous labyrinth is endolymph Image
Read 13 tweets
Aug 1
1/They say form follows function!

Brain MRI anatomy is best understood in terms of both form & function.

Here’s a short thread to help you to remember important functional brain anatomy--so you truly can clinically correlate! Image
2/Let’s start at the top. At the vertex is the superior frontal gyrus. This is easy to remember, bc it’s at the top—and being at the top is superior. It’s like the superior king at the top of the vertex. Image
3/It is also easy to recognize on imaging. It looks like a big thumb pointing straight up out of the brain. I always look for that thumbs up when I am looking for the superior frontal gyrus (SFG) Image
Read 12 tweets
Jul 29
1/Talk about bad blood!

Do you know when a hematoma is going to expand?

Read on for month’s @theAJNR SCANtastic on all you need to know about imaging intracranial hemorrhage!

ajnr.org/content/46/7/1…Image
@TheAJNR 2/Everyone knows about the spot sign for intracranial hemorrhage

It’s when arterial contrast is seen within a hematoma on CTA, indicating active
extravasation of contrast into the hematoma.

But what if you want to know before the CTA? Image
@TheAJNR 3/Turns out there are non-contrast head CT signs that a hematoma may expand that perform similarly to the spot sign—and together can be very accurate.

How can you remember what they are? Image
Read 9 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(