🚨NEW STUDY🚨
“Given the high expectations placed on #DAC for future #decarbonisation, recent study presents an extensive review of DAC tech, exploring a number of techno-economic aspects, including an updated collection of the current & planned DAC projects around the world.”
🧵
“A dedicated analysis focused on the production of synthetic methane, methanol, and diesel from #DAC and electrolytic hydrogen in the European Union (EU) is also performed, where the #carbonfootprint is analysed for different scenarios and energy sources.”
2/10
The results show that “the maximum grid carbon intensity to obtain #NegativeEmissions with #DAC is estimated at 468 gCO 2 e/kWh, which is compliant with most of the EU countries’ current grid mix.”
3/10
“Using only photovoltaics (PV) and wind, #NegativeEmissions of at least −0.81 tCO 2 e/tCO 2 captured can be achieved.”
4/10
“The maximum grid intensities allowing a reduction of the synthetic fuels carbon footprint compared with their fossil-fuels counterparts range btw 96 & 151 gCO 2 e/kWh.”
5/10
However, “to comply with the Renewable Energy Directive II (REDII) sustainability criteria to produce renewable fuels of non-biological origin, the maximum stays between 30.2 to 38.8 gCO 2 e/kWh.”
6/10
“Only when using PV and wind is the EU average able to comply with the REDII threshold for all scenarios and fuels, with fuel emissions ranging from 19.3 to 25.8 gCO 2 e/MJ.”
7/10
These results highlight the “importance of using renewable energies for the production of synthetic fuels compliant with the EU regulations that can help reduce emissions from difficult-to-decarbonise sectors.”
8/10
Read the paper entitled: "The Role of Direct Air Capture in EU’s Decarbonisation and Associated Carbon Intensity for Synthetic Fuels Production" here ⬇️ econpapers.repec.org/article/gamjen…
🚨French Academy of Sciences has released a new report on #SolarGeoengineering, stressing that the absolute priority must remain reducing GHG emissions via structural changes & accelerating adaptation to climate impacts.
On #SRM, the report offers several recommendations:🧵1/6
2/ SRM Recommendation 1️⃣
Promote an international agreement aimed at prohibit any initiative, public or private, to deploy SRM, regardless of the framework or scale.
To do this, the entire scientific community will have to be involved.
3/ SRM Recommendation 2️⃣
Support & deepen research on climate, atmospheric physicochemical processes and biodiversity in order to be able to rigorously assess the potential & risks of SRM.
🚨An analysis of forest-based projects funded through the sale of #CarbonCredits shows that 10% of them may have a net warming effect on the climate because of the way they alter the Earth’s #albedo, or how much sunlight is reflected back into space.
DETAILS🧵1/12
2/ Albedo is how much sunlight Earth’s surface reflects vs. absorbs
Forests are darker than grass or snow, meaning they absorb more heat
So when grasslands or snowy areas are turned into forests, Earth’s surface can absorb more heat, partly cancelling out cooling effect of #CDR
3/ So, this study analyzed 172 Afforestation, Reforestation & Revegetation projects in the Voluntary Carbon Market - projects that collectively aim to deliver nearly 800 million tons of CDR over the next century.
But none of these projects’ standards account for albedo change.
🚨Can buildings remove CO₂ while cooling indoor air?
A new study shows that adding CO₂ capture units (#DAC) to building cooling systems can cut energy use by over 50% & remove atmospheric carbon, even in hot, humid places.
Details🧵1/10
2/ Buildings use a lot of energy. About 37% of global energy & 40% of CO₂ emissions.
Cooling is the biggest part, taking almost 40% of building electricity.
As the planet warms, cooling demand rises, creating a vicious cycle.
3/ Direct Air Capture extracts CO₂ directly from ambient air, unlike point-source capture.
But adsorption-based DAC struggles in humid environments: water competes with CO₂ for sorbent sites, making it very energy-hungry.