Michele Tizzoni 🇺🇦 Profile picture
Feb 24, 2020 6 tweets 2 min read Read on X
Una lettura accessibile ma molto precisa per capire meglio che cosa sappiamo ma soprattutto cosa *non* sappiamo delle caratteristiche epidemiologiche di #covid19 #coronavirusitalia harvardmagazine.com/2020/02/fighti…
l'articolo raccoglie i commenti di alcuni tra i più importanti esperti mondiali di epidemiologia, tra cui @mlipsitch - un'autorità in questo campo. Ecco alcuni punti rilevanti:
-> R0 varia tra 1.5 e 2.5, quindi più basso di SARS ma comunque ben al di sopra della soglia epidemica
-> la distribuzione del serial interval (il tempo che intercorre tra due infezioni consecutive in una catena) e quella del periodo di incubazione sono quasi identiche. Il che implica che l'infezione si trasmette anche quando si è pre-sintomatici o nella fase iniziale dei sintomi
questo implica che le misure di tracciamento dei contatti e di isolamento di tutti i casi a rischio siano quasi impossibili da implementare con successo come fatto per SARS. Per fermare #SARSCoV2 sarà necessario sviluppare forme di intervento farmaceutiche, come il vaccino.
-> "Infected is different from sick". Solo alcuni degli infetti sviluppano sintomi e solo alcuni di questi ultimi sviluppano sintomi gravi da portare al decesso. "Only about 1% to 2% of those who have become sick thus far have died".
Non abbiamo ancora una stima veramente affidabile di queste proporzioni, ma il numero degli infetti potrebbe essere molto più grande del numero di coloro che sviluppano sintomi, quindi riducendo drasticamente le stime di mortalità complessive.

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Michele Tizzoni 🇺🇦

Michele Tizzoni 🇺🇦 Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @mtizzoni

Nov 15, 2020
Leggo con interesse la grande enfasi che viene data dai quotidiani italiani, in particolare La Repubblica, alla scoperta del fatto che SARS-CoV-2 stesse circolando in Italia da Settembre 2019 repubblica.it/cronaca/2020/1…
Sono andato a cercare lo studio in questione: journals.sagepub.com/doi/full/10.11…
Mi incuriosisce il fatto che uno studio che mostra un risultato così importante (direi eclatante) venga pubblicato su una rivista molto specialistica, nel campo dell'oncologia, e con IF non particolarmente alto
Leggendo meglio, scopro che la rivista è di fatto il Journal della Fondazione IRCCS - Istituto Nazionale dei Tumori, e il senior author della pubblicazione sicuramente era (o è ancora) Editor-in-Chief della rivista. istitutotumori.mi.it/tumori-journal
Read 6 tweets
Oct 2, 2020
I casi di #COVID19 in Italia sono aumentati nelle ultime settimane ma qual è la probabilità che almeno una persona positiva a SARS-CoV-2 sia presente in un gruppo di 10 o 100 o 1000 persone? Per provare a rispondere, abbiamo sviluppato Eventi e Covid-19 👉datainterfaces.org/projects/covid…
La mappa mostra una stima del rischio di essere esposti al virus SARS-CoV-2 per provincia, sulla base del numero di persone che partecipano ad un evento. Il rischio è espresso come la probabilità che almeno un individuo positivo sia presente all'evento. 👇
Il rischio di incontrare una persona positiva SARS-CoV-2 in una provincia dipende da tre fattori: i) la stima della prevalenza di casi nella specifica provincia; ii)
Il fattore di sottostima delle infezioni da parte della sorveglianza iii) Il numero di partecipanti all'evento👇
Read 8 tweets
Jul 21, 2020
In the past months, we have been monitoring the mobility of Italians during the COVID-19 emergency using data from @Cuebiq's Data4Good program. We published aggregated mobility metrics updated until April 17 in @ScientificData nature.com/articles/s4159… 1/N
Today we are happy to release an *updated version of the dataset* with a timeline that covers the period January 18 - June 26, 2020.
The data is available on the @humdata Humanitarian Data Exchange: data.humdata.org/dataset/covid-… 2/N
To cover an extended timeline, we defined a new panel of users to generate the new dataset. There are some important differences between this panel and the one described in nature.com/articles/s4159… 3/N
Read 6 tweets
Jun 30, 2020
In questo breve articolo, mostriamo come la stima di R(t) dipenda in modo critico dai dati utilizzati come input dell'algoritmo di ricostruzione (e molto meno dal tipo di algoritmo usato). Conoscere la curva epidemica con le date di insorgenza dei sintomi è fondamentale.
ci sono diversi metodi che cercano di inferire la data di insorgenza dei sintomi usando la distribuzione del ritardo tra sintomi e notifica. In questo lavoro mostriamo che in genere questi metodi non sono sufficientemente accurati e possono introdurre errori non trascurabili.
Usare i dati sbagliati per stimare R(t) può condurre a interpretazioni errate degli effetti delle policy adottate. Vista l'importanza che R(t) ha nel dibattito pubblico e nelle scelte di molti governi, è fondamentale tenere conto della qualità dei dati disponibili per stimarlo.
Read 4 tweets
Jun 17, 2020
After 2+ years of hard work, our paper on measuring gender gaps in human mobility with mobile phone data is finally out! nature.com/articles/s4159… It's been a great team effort! thanks to @laetitiagvn @ciro @simonepiaggesi @nataliaadler19 @sverhulst @_AndrewYoung @leoferres
1/N Image
In this work we analyzed a large dataset of de-identified CDRs from mobile phone users in Santiago, Chile, and tried to answer the question: do women move differently than men, in the city? tl;dr - Yes, they do.
2/N Image
First, we show that women visit fewer unique locations than men, and distribute their time less equally among such locations. 3/N Image
Read 8 tweets
May 28, 2020
Our 5th report on the COVID-19 Mobility Monitoring project is out: covid19mm.github.io/in-progress/20… In the past weeks we observed a slow but steady increase in the mobility and proximity of Italians.
Users’ movements between different provinces are now at -30%, on average, w.r.t the baseline. The median of users’ movements on connections within the same region has increased to -27%. Movements on connections between provinces of different regions have increased to -60%.
The median radius of gyration has further increased since the first week of Phase 2 but still remains on average at -56% below the baseline values.
Read 6 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(