One of the under-appreciated aspects of the Chinese 2060 net-zero target is the massive spillover effects it would have on the rest of the world. An economy as large as China's mobilizing to decarbonize the entire economy would substantially drive down clean energy costs. 1/6
The recent IEA WEO 2020 predicts that global CO2 emissions will plateau around 2019 levels, but does not include recent net-zero targets. Including China's (via the Tsinghua University analysis) would lead to global emissions declining in coming years: 2/6
If China were to decarbonize while the rest of the world did nothing, it alone would drive global solar prices down by 65% and wind prices down by 17% assuming historical learning rates continue. These effects will be even more pronounced for nascent tech outside power sector 3/6
Nuclear prices would drop as well as China increases its fleet 7-fold, though spillover there is a bit harder to generalize given the nature of country and site-specific construction costs (vs more assembly line production for renewables). Advanced nuclear would also benefit. 4/6
Driving down the costs of clean energy through rapid deployment is critically important, as in many ways technology enables policy. This is particularly true in rapidly industrializing countries where climate is likely to be – at least in the short term – a secondary concern: 5/6
This quick thread is based on a more detailed talk I gave a talk yesterday to the Institute of Atmospheric Physics, Chinese Academy of Sciences (thanks for the opportunity @Lijing_Cheng!). 6/6
• • •
Missing some Tweet in this thread? You can try to
force a refresh
Michael Mann has new book out – The New Climate War. I've coauthored papers in the past with Mike and respect his scientific and communications work. However, in his book he claims that my organization @TheBTI was "initially linked to the fossil fuel industry". This is false. (1)
Prior to the release of his book we reached out and sent the following letter to Mike, giving him the opportunity to correct the record. Unfortunately, as we never heard back we have decided to make it public: thebreakthrough.org/articles/lette… (2)
The @TheBTI has never accepted any money from the fossil fuel industry or industry employees. Mike suggests otherwise based on the fact that BTI once received some funding from the George and Cynthia Mitchell Foundation. thebreakthrough.org/about/who-we-a… (3)
If we can get emissions down to zero (or net-zero), the planet will likely stop warming. Good @guardian piece covering this issue – which is well understood by the scientific community but often missed in public discussions. theguardian.com/environment/20… 1/6
This is good news, because it means that warming that occurs this century is almost entirely under our control. We can decided how much CO2 and other greenhouse gases we emit, and the climate will respond accordingly. 2/6
However, the downside of this finding is that even if we get emissions all the way down to zero, temperatures will not fall, at least for the next few centuries. Without net-negative emissions climate change is largely irreversible. 3/6
Lets clarify something about "committed warming". A world where concentrations of CO2 and other GHGs remain constant in the atmosphere is not the same as a world where emissions go to zero. The former has ~0.5C or more warming "in the pipeline", while the latter is closer to 0C.
If concentrations stay constant (e.g. atmospheric CO2 remains at 412 ppm indefinitely), the oceans continue to heat up for the next few millennia. The vast heat capacity of the deep oceans currently buffers warming, as some of the heat diffuses down to the deep ocean.
If emissions actually fall all the way to zero (or net-zero), atmospheric CO2 concentrations start declining. This mostly counteracts the warming in the pipeline as the oceans continue to warm to reach equilibrium. agupubs.onlinelibrary.wiley.com/doi/full/10.10…
Fascinating new paper by @AndrewDessler and colleagues arguing committed warming might be higher than expected given historical pattern effects. Its combining a lot of different concepts together, so lets spend some time disentangling them nature.com/articles/s4155…
A thread: 1/19
The paper's headline number is that we previously thought the world was committed to 1.3C warming, but that number is actually over 2C (> 1.5C by 2100). This is quite a different message than we get from Earth System Models, which suggest committed warming is only ~1.2C. 2/19
This would imply that the 1.5C by 2100 target is effectively impossible, and that long-term warming of >2C would be very difficult to avoid. However, the devil is in the details, and the picture is not quite as dire as it would seem at first glance. 3/19
Climate scientist here; stuff like this is dangerously inaccurate.
If we stop emissions tomorrow, the earth will remain around 1.2C above preindustrial temps. If we get to net-zero emissions by 2060 or so, we can still limit warming to well below 2C.
A wide range of studies – including the latest state-of-the-art Earth System Models – all show there isn't much additional warming "in the pipeline" if emissions go to zero. Saying its too late makes folks give up hope; the warming we get is still up to us biogeosciences.net/17/2987/2020/
To elaborate a bit, if we held atmospheric concentrations of CO2 constant, the world would indeed warm another 0.5C or so. But if emissions go to zero, falling levels of atmospheric CO2 counteract additional warming as the ocean equilibrates with the atmosphere.
We've done a major update of our @CarbonBrief CMIP6 explainer to include the latest ScenarioMIP results; up to 36 different CMIP6 models included now, with between 28 and 35 models available in each of the "Tier 1" scenarios (2.6, 4.5, 7.0, and 8.5): carbonbrief.org/cmip6-the-next… 1/8
Here are the latest warming projections (late 21st century vs preindustrial) from CMIP6 models. Note that SSP1-1.9 is included as it has 12 models available, but others (3.4, 6.0) are not shown as they still have very few (< 10) models reporting. 2/8
Some notable changes: the SSP1-1.9 scenario which was designed to limit warming to 1.5C actually succeeds in doing that in the multimodel mean (which was not the case when we had fewer model runs in our initial analysis). Similarly, SSP1-2.6 MMM (barely) limits warming to 2C. 3/8