LiftPool adopts the philosophy of the classical #Lifting#Scheme from #signal#processing. LiftDownPool decomposes a feature map into various downsized sub-bands, each of which contains information with different frequencies. Because of its invertible properties, ... 2/n
by performing LiftDownPool backwards, a corresponding up-pooling layer #LiftUpPool is able to generate a refined upsampled feature map using the detail sub-bands, which is useful for #image-#to-#image#translation challenges. 3/n