Accepting PCR as the Gold Standard because it brings higher positive rates is like choosing a thermometer because it sometimes gives higher temperatures.

PCR/Antigen positivities is NOT constant, varies from ~1/1 to higher than 2/1

That's NOT better detection, but fraudulent +
In our research on Madrid's Ct data (amazing results soon!), we needed the best sensitivity&especificity actual values for PCR&Antigen tests.

It's amazing how studies comparing both ASSUME PCR is the ruler, despite the fact that ELISA results use to align better with antigen's.
When they find low prevalence 2x PCR/Antigen positivities, they never think, hey, it COULD be PCR is detecting too much

Like they didn't know high Ct PCR catches lots of viral non infective fragments

Why could any test get better(or worse) depending on prevalence?!
It's sad to say:

PCR is not the Gold Standard because it's better at catching infective true SARS-CoV2.
It's because it's much better at creating CASES, and we all know what that means in Covid times:
Fear and restrictions.

True Epidemic development?
They don't give a damn.
We're soon to release our research's results, but only from analysing the official data we can see there's an inverse proportion in PCR overdetection and cases.
The lesser epidemic, the most PCR+

Our research will show you it is DIRECTLY related to PCR+ Ct values.

Stay on tune.

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with plaforscience

plaforscience Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @plaforscience

16 Apr
RELEVANT RESULT

We've found that False (Old) PCR positivity is a function of PCR average Ct.
Fake Old Cases are created if average Ct is over ~27.5
Then on, Fake proportion grows at ~30% for each average Ct point.
At AvCt>31 we will have ~only old fake cases.

The method:
THREAD Image
We have Madrid dataset with PCR&Antigen test results and PCR Ct averages.

Using them we can calculate the positivities found with each of the methods. We observe they're similar, but PCR is higher with lower prevalence, and Ant with higher prevalence.

Let's compare them. ImageImage
If we find their proportions we notice PCR is almost all the way giving MUCH HIGHER positivities than Antigen.
They could have same rate (1) if test were technically equal, OR a constant disproportion due to better specificity/sensitivity.
But changing over time makes NO SENSE. Image
Read 15 tweets
13 Apr
If we check Europe excess death, we see winter seasonal epidemic is done&gone
Current fear bubble&restrictions rush is a Human Artifact politically created thru testing from mid February on
How can it be Armageddon when there's no excess death or even lesser deaths than expected? Image
Of course excess death is NOT the Epidemic, lots of unexpected deaths are occurring due to Covid madness. But they're flat in time, a ~constant background, following the all cause deaths pattern.
The WAVING in excess death will relate the shape of epidemic death, not its height.
The good January correlation death/cases is due to a flat test pressure, as u can see in the most populated countries testing graphics
True trend was detected

Once basal phase was reached, testing pointed slightly upwards, with strong growths in France and TESTING MADNESS in UK ImageImage
Read 4 tweets
11 Apr
Apart for the amazing confirmation of the existence of OLD PCR+ noted as cases, we can use the official data on cases detected for test type to do some interesting analysis.

1st wave was obviously a PCR issue, not interesting except for little scale due to lower testing.
Zooming in 2nd&3rd Waves we observe a CLEAR disproportion between them, depending on test type.
2nd wave was over 2/3 of 3rd thru PCR, but less than 1/3 thru antigen!!

The MUST be same proportion. Why is there EXTRA PCR+ positivity?!

We've talked about it LONG AGO:
OLD cases.
That shows even clearer when you draw observed positivity for PCR&Antigen.

3rd wave, the winter seasonal expected wave, shows similar positivities, meaning every kind of test founding the same, but 2nd wave is unbalanced, with only a 60% of positivity thru Antigen.
Read 4 tweets
11 Apr
THIS IS VERY IMPORTANT!

We finally get CONFIRMATION that our estimate of Fake Epidemic Creation thru detection of OLD PCR+, non infective, noted as cases, IS CORRECT.

We get access to a new data set, number of + for test technique, that validate our method's values.

Thread:
You can find the model in the link.

We wanted to know the share of PCR+ that were OLD non infectious, using Ct data; and thus finding true Epidemic.

For model development we needed to calculate the number of test that were official positive by type.

The premise is that any test MUST find same TRUE positivity. Then you can develope equations:
PCR+=(True+)+(False+)+(Old+)
ANTIGEN+=(True+)+(False+)

Solving, we get the number of test by type that MODEL PREDICTS must have been officially positive.

Highlighted in foresee graph:
Read 10 tweets
4 Apr
We've refined our calculations with Madrid Ct data. We've included pure false positivity, and isolated PCR&Antigen real/official series.

The 2nd wave is showing it's mainly Human made thru test policy, which maintained high proportional levels thru winter: Xmas irresponsibility Image
We can calculate official positive #test for each kind of test, considering Cts

Despite the variable proportion PCR+ are always more important in Epidemic creation, specially weird spikes, not shown in the more natural Antigen+
Guess when is more different?
Yep, Irresponsible! Image
We observed a relation between official positivity and inverted average Ct.

It does mean positivity is contaminated with high test pressure, creating more positivity than real.

We also observe average Ct<28 relates with Epidemic growth, while higher values point descent/plateau Image
Read 5 tweets
4 Apr
I bet you've never seen this graph. I haven't.

It's so interesting: just dividing the test done for the cases found the PREVIOUS week, we can see test pressure is NOT dependent on Epidemic spread BUT political intentions.

It's Madrid data, as we're currently working with.
One usual myth used by trølls and or government, sorry for the redundance, is claiming that is not that rising the number of test increases cases, BUT the raise in case forces increase in test.

It's FALSE.

It's EXACTLY THE OPPOSITE:
More test pressure when lower cases found.
For graph dummies, red line means up to 25 test/case-found are made with low spread, but only 5 during spike.

It should be a straight line, the more u find the more you search, or a Crisis Watch, curve related to Epidemic curve: u search even more when u find.

It's THE OPPOSITE
Read 6 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Too expensive? Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal Become our Patreon

Thank you for your support!

Follow Us on Twitter!