Das @rki_de berechnet die R-Zahl im Nowcasting. Nach den epidemiologischen Modellen lässt sich die Entwicklung der Fallzahlen durch eine Exponentialfunktion annähern. Aus diese lässt sich dann die R-Zahl berechnen. Zeit diese beiden Ansätze zu vergleichen.
1/6
Die blaue Linie stellt den Punktschätzer des RKI und der hellblaue Bereich das Vertrauensintervall dar. Analog stellt die rote Linie den Punktschätzer aus der Regressionsanalyse dar und der hellrote das Vertrauensintervall.
Die Regressionsanalyse nimmt an, das die R-Zahl
2/6
über einen Zeitraum von 11, 14, 21, 28, 35 oder 42 Tagen konstant war. Leider haben wir bei der R-Zahl selten über längere Zeiträume konstante Verhältnisse. Ferien oder politische Entscheidungen oder Impfungen ändern das Umfeld.
3/6
Je länger der Zeitraum, desto langsamer reagiert eine Regressionsanalyse. Je kürzer der Zeitraum, desto breiter das Vertrauensintervall. Der ist jedoch entscheidend, für eine Modellierung in die Zukunft.
Bei 11 Tagen wird der Zeitraum genutzt, der für die 7-Tage-R-Zahl des
4/6
RKI verwendet wird. Das Vertrauensintervall ist breit und die R-Zahl volatil innerhalb einer Woche. Dafür folgt die Kurve der R-Zahl des RKI sehr gut. Das Vertrauensintervall des RKI ist abhängig von der Genauigkeit der Fallzahlen. Die Fallzahlen der Vergangenheit werden dazu
5/6
laufen korrigiert und immer genauer. Dies ist bei der Regressionsanalyse nicht der Fall. Die liegt an der unterschiedlichen Methode. Die R-Zahl des RKI ist ein Tageswert, die Regression bestimmt den Wert für einen Zeitraum.
Rechts ist auch das CI beim Nowcasting groß.
6/6

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Thomas Arend

Thomas Arend Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @ByggvirOfBarley

15 Sep
1/n
Die Idee ist im Ansatz sehr gut. Ändern wir die Idee ein klein wenig ab. Nehmen wir an, die Wahrscheinlichkeit bei einer Begegnung mit einem Hund gebissen zu werden ist 1%. Nicht aufs ganze Leben gerechnet, sonder auf eine einzelne Begegnung. Aus einem Versuch wissen wir,
2/n
dass ein Leckerli das Risiko um 95% auf 0,05% senkt. Von 2000 Menschen ohne Leckerlie werden als im Schnitt 20 gebissen. Von 2000 mit Leckerli nur einer. Oder: Ohne Leckerli werde ich im Schnitt bei jeder 100sten Begegnung gebissen, mit Leckerli nur bei jeder 2000sten.
3/n
Begegne ich jedem Monat einem Hund, werde ich im Schnitt alle 8 Jahre 4 Monat einmal gebissen. Mit Leckerli werde ich einmal in 166 Jahren und 8 Monaten gebissen. Ich habe also gute Chance gar nicht gebissen zu werden. Nun erhöhen wir die Kontakte aus eine pro Tag.
Read 14 tweets
14 Sep
1/n
Prof. Frank P. Meyer schreibt häufig Leserbriefe zum absoluten (AR) und relativen Risiko (RR), hat die Unterschiede aber nicht so recht verstanden.
Deshalb spielen wir jetzt russischen Roulette.
Zuerst nehmen wir 6-Schüssige Revolver (Rn). In R1 kommen
aerzteblatt.de/archiv/221054/…
2/n
2 Patronen, in R2 kommt 1 Patrone.
Das abs. Risiko bei einem Schuss aus R1 zu sterben ist 0,333, bei R2 ist es 0,166. Die AR-Reduktion(ARR) ist 0,333-0,166=0,166=16,6%. Das RR ist 0,166/0,333 = 0,50 oder 50%. Und die RR-Reduktion auch 50%
3/n
Nun erhöhen wir die Zahl der Patronen. In R3 kommen 3 und in R4 kommen 2. Das AR bei einem Schuss aus R3 zu sterben ist jetzt 0,5; aus R4 ist es 0,333. Die ARR ist wieder 0,5-0,333=0,166= 16,6%. Das RR ist 0,333/0,5=0,666. Dh. die RRR nur noch 33,3%.
Read 13 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Too expensive? Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal Become our Patreon

Thank you for your support!

Follow Us on Twitter!

:(