Lea Alhilali, MD Profile picture
Jan 5, 2023 22 tweets 10 min read Read on X
1/Nothing strikes fear into the heart of a radiologist like the question,“Is it safe to do an MRI on this pt w/an implanted device?”

Never fear again! Here’s a #tweetorial on how to navigate implanted devices & #MRI
#medtwitter #meded #radtwitter #radres #neurotwitter #neurorad
2/MRI & CT are like nuclear & coal power, respectively. Everyone knows CT is worse for you & usually MRI is very safe & better for your body

But like nuclear power, when things go bad in MRI, they can go horribly wrong. Flying chairs into the magnet wrong. So, people are afraid
3/The trouble is from the magnetic attractive forces. There are 3 ways these attractions can wreak havoc. First is translation. Magnet literally pulls an object, like a chair, towards itself. This is the strongest attraction—like two lovers who literally can’t stay apart.
4/Second is torque or rotation. This is when the force isn’t strong enough to pull the object away, but enough to make it wiggle or turn a bit.

It’s like an attraction that isn’t enough to make you run, but enough to make you turn your head & look.
5/Last is the sneakiest way the magnet damages—heat. Radiofrequency (RF) waves deposit heat, like other waves, such as microwaves. This causes internal heating w/o any movement.

It’s like the hot passion you feel deep inside for your lover, regardless of any physical contact
6/All of these effects stem from the fact that the MR is just a giant magnet & its exerts forces on objects in the magnetic field.

Since these effects are from a magnet, it makes sense that metal objects would be the most affected—as metals can be magnetized.
7/But not all metals are affected the same by the magnetic field. We all know that metals like nickel & iron are very attracted to magnets, while other metals like calcium are not.

More affected objects will feel more force in the MRI & are more likely to move/cause damage.
8/We classify implants by how likely they’ll move in the MR field. MR unsafe devices are highly magnetic & could fly into the MRI & thus are banned. MR safe means no metal or magnetic properties, completely unaffected. MR conditional is in between, some attraction, but not strong
9/How do we know which metals are unsafe & which are possibly safe?

There are two main types of magnetic metals.

Ferromagnetic metals are very magnetic. I remember this b/c ferro sound like ferocious, & so they are ferociously magnetic.

These are MR unsafe.
10/Four main ferromagnetic metals exist: iron, nickel, cobalt, & steel. Remember this by remembering a dashing, some might say magnetic, Knight. He wears wrought IRON armor, holds a strong STEEL sword, & rides a bolting colt (COBALT). He’s a poor mercenary, so he’s paid w/NICKELs
11/While ferromagnetic metals are MR unsafe, their alloys are not. Adding other metals can counteract the magnetism or transform it into a completely new metal that isn’t magnetic.

Most medical devices are these alloys. You really only see true ferromagnetic metals in shrapnel
12/While ferromagnetic objects are strongly magnetic, paramagnetic objects are only weakly magnetic.

I remember this b/c they are PARamagnetic & PAR in golf means just average, nothing really special.

So there is no special or strong magnetism in these metals.
13/Paramagnetic objects are MR conditional. They have the potential to cause tissue damage by torque objects or heating objects. This risk must be weighed against the benefit of getting an MRI
14/Torque can be a problem.

However, if the device is in anything w/motion (vessel w/flowing blood, beating heart, moving bones), torque from physiologic motion is stronger than any from the magnet.

So if it stays in place w/natural forces, it won’t be moved by the magnet.
15/They say you should wait 6 weeks after any implanted device before scanning, to let scar tissue form to further anchor the device.

While this is ideal, it isn’t really necessary—b/c if the physiologic forces haven’t dislodged it yet, neither will the magnet.
16/But what if the paramagnetic device isn’t in a location where there is motion to test it? What if it’s in the kidney? Is it still safe? It probably is, b/c the magnetic forces are weak. Check the manufacturer recommendations to see how much magnetic force you can use & be safe
17/Paramagnetic objects can heat up. Even w/low magnetism, you get heating—& it’s hard to predict b/c the heat amount depends on the patient, scan parameters, etc

So every pt w/a device should get a squeezy ball to squeeze if they feel heating—to stop the scan before any damage
18/A special problem for heating is 1 dimensional (1D) wires.

These collect RF energy like an old TV antenna & concentrate the energy at their tip—leading to high risk of burns at the tip.

So any device with a 1D wire needs a special protocol to prevent overheating
19/RF pulses not only heat, they also can interfere w/electronics of devices—like jamming radio signals.

This can lead to device malfunction or even delivery of incorrect signals that can cause arrhythmias.

Special care must be taken & devices should be checked after scanning
20/As a result, scanning protocols for devices w/1D leads (pacers, DBS) are very strict & require oversight. Even then, there is hesitancy to scan 1D leads w/high risk of heating (abandoned leads, temporary leads)
21/So there are 4 questions to ask yourself to determine if an device is safe:

Is it:
(1) ferromagnetic?
(2) a 1D lead?
(3) a device w/vulnerable electronics?

If not, it usually safe to scan using the protocol recommended by the manufacturer.
22/The quick & dirty method: Is it a ferromagnetic knight? Is it an old TV w/electronics or antenna? If not, then scan carefully w/manufacturer’s recs.

Now you know the secret of safe MRI scanning w/implants. Hopefully this tweetorial has been a white knight to your rescue!

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Lea Alhilali, MD

Lea Alhilali, MD Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @teachplaygrub

Jun 23
1/Do you get a Broca’s aphasia trying remember the location of Broca's area?

Does trying to remember inferior frontal gyrus anatomy leave you speechless?

Don't be at a loss for words when it comes to Broca's area

Here’s a 🧵to help you remember the anatomy of this key region! Image
2/Anatomy of the inferior frontal gyrus (IFG) is best seen on the sagittal images, where it looks like the McDonald’s arches.

So, to find this area on MR, I open the sagittal images & scroll until I see the arches. When it comes to this method of finding the IFG, i’m lovin it. Image
3/Inferior frontal gyrus also looks like a sideways 3, if you prefer. This 3 is helpful bc the inferior frontal gyrus has 3 parts—called pars Image
Read 13 tweets
Jun 19
1/Feeling intoxicated trying to remember all the findings in alcohol use disorder?!

Here’s something to put you in high spirits!

This month’s @Radiographics has the important neuroimaging findings alcohol use disorder!



@cookyscan1 @RadG_editor #RGphx pubs.rsna.org/doi/10.1148/rg…Image
2/There’s an easy rhyme to help you remember the important neuroimaging findings of alcohol use disorder

“Basal ganglia is white...”

Get intrinsic T1 shortening in the BG that makes it look white as a ghost! Image
3/Next “...Cortex is bright”

Acute hyperammonemic encephalopathy cause cortical restricted diffusion, especially the insula, so that it looks as bright as a light bulb! Image
Read 8 tweets
Jun 9
1/Need help reading spine imaging? I’ve got your back!

It’s as easy as ABC!

A thread about an easy mnemonic you can use on every single spine study you see to increase your speed & make sure you never miss a thing! Image
2/A is for alignment

Look for:
(1) Unstable injuries

(2) Malalignment that causes early degenerative change. Abnormal motion causes spinal elements to abnormally move against each other, like grinding teeth wears down teeth—this wears down the spine Image
3/B is for bones.

On CT, the most important thing to look for w/bones is fractures. You may see focal bony lesions, but you may not

On MR, it is the opposite—you can see marrow lesions easily but you may or may not see edema associated w/fractures if the fracture is subtle Image
Read 11 tweets
Jun 6
1/Raise your hand if you’re confused by the BRACHIAL PLEXUS!

I could never seem to remember or understand it—but now I do & I’ll show you how!

A thread so you will never fear brachial plexus anatomy again! Image
2/Everyone has a mnemonic to remember brachial plexus anatomy.

I’m a radiologist, so I remember one about Rad Techs.

But just remembering the names & their order isn’t enough.

That is just the starting point--let’s really understand it Image
3/From the mnemonic, we start with the roots—the cervical nerve roots.

I remember which roots make up the brachial plexus by remembering that it supplies the hand.

You have 5 fingers on your hand so we start with C5 & we take 5 nerve roots (C5-T1). Image
Read 20 tweets
Jun 4
1/Having trouble remembering what to look for in vascular dementia on imaging?

Almost everyone w/memory loss has infarcts. Which are important?

The latest @theajnr SCANtastic has what you need to know:

ajnr.org/content/46/5/1…Image
@TheAJNR 2/Vascular cognitive impairment, or its most serious form, vascular dementia, used to be called multi-infarct dementia.

It was thought dementia directly resulted from brain volume loss from infarcts, w/the thought that 50-100cc of infarcted related volume loss caused dementia Image
@TheAJNR 3/But that’s now outdated. We now know vascular dementia results from diverse pathologies that all share a common vascular origin.

It’s possible to lose little volume from infarct & still result in dementia.

So if infarcts are common—which contribute to vascular dementia? Image
Read 20 tweets
Jun 2
1/Having trouble remembering how to differentiate dementias on imaging?

Is looking at dementia PET scans one of your PET peeves?

Here’s a thread to show you how to remember the imaging findings in dementia & never forget! Image
2/The most common functional imaging used in dementia is FDG PET. And the most common dementia is Alzheimer’s disease (AD).

On PET, AD demonstrates a typical Nike swoosh pattern—with decreased metabolism in the parietal & temporal regions Image
3/The swoosh rapidly tapers anteriorly—& so does hypometabolism in AD in the temporal lobe. It usually spares the anterior temporal poles.

So in AD look for a rapidly tapering Nike swoosh, w/hypometabolism in the parietal/temporal regions—sparing the anterior temporal pole Image
Read 16 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(