Usually MLOps Engineers are professionals tasked with building out the ML Platform in the organization.
๐
This means that the skill set required is very broad - naturally very few people start off with the full set of skills you would need to brand yourself as a MLOps Engineer. This is why I would not choose this role if you are just entering the market.
๐
However, you can get into the role from various sides once you already have some experience. Here are some examples - If you currently are:
๐
ML Engineer: if you are currently successful in your role you might already have skills that are needed to become a successful MLOps Engineer. What you will need to do though is switch from an execution to a service role. So the main shift is mental rather than technical.
๐
๐๐ป๐ณ๐ฟ๐ฎ๐๐๐ฟ๐๐ฐ๐๐๐ฟ๐ฒ/๐๐น๐ผ๐๐ฑ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ: you are most likely good with infrastructure architecture, IaaC, Cloud Services etc. These are all crucial skills to have in the ML platform team.
๐
๐๐ฒ๐๐ข๐ฝ๐ ๐๐ป๐ด๐ถ๐ป๐ฒ๐ฒ๐ฟ: you have probably mastered CI/CD infrastructure and very well know how to template and automate things, how to increase developer velocity - each of these being a necessity to become MLOps engineer.
๐
Software Engineer: areas that software engineering skills could be leveraged in ML platform team: coding up clean interfaces, backend services, UIs to be used by platform adopters. Additionally, you are probably as good with CI/CD infrastructure as most DevOps engineers are.
๐
In any case - be prepared to learn a lot as MLOps Engineers are generalists and it usually takes a lot of time to acquire the full-stack.
You are very likely to run into a ๐๐ถ๐๐๐ฟ๐ถ๐ฏ๐๐๐ฒ๐ฑ ๐๐ผ๐บ๐ฝ๐๐๐ฒ ๐ฆ๐๐๐๐ฒ๐บ ๐ผ๐ฟ ๐๐ฟ๐ฎ๐บ๐ฒ๐๐ผ๐ฟ๐ธ in your career. It could be ๐ฆ๐ฝ๐ฎ๐ฟ๐ธ, ๐๐ถ๐๐ฒ, ๐ฃ๐ฟ๐ฒ๐๐๐ผ or any other.
๐
Also, it is very likely that these Frameworks would be reading data from a distributed storage. It could be ๐๐๐๐ฆ, ๐ฆ๐ฏ etc.
So how do we implement ๐ฃ๐ฟ๐ผ๐ฑ๐๐ฐ๐๐ถ๐ผ๐ป ๐๐ฟ๐ฎ๐ฑ๐ฒ ๐๐ฎ๐๐ฐ๐ต ๐ ๐ฎ๐ฐ๐ต๐ถ๐ป๐ฒ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด ๐ ๐ผ๐ฑ๐ฒ๐น ๐ฃ๐ถ๐ฝ๐ฒ๐น๐ถ๐ป๐ฒ in ๐ง๐ต๐ฒ ๐ ๐๐ข๐ฝ๐ ๐ช๐ฎ๐?
๐ญ: Everything starts in version control: Machine Learning Training Pipeline is defined in code, once merged to the main branch it is built and triggered.
๐
๐ฎ: Feature preprocessing stage: Features are retrieved from the Feature Store, validated and passed to the next stage. Any feature related metadata is saved to an Experiment Tracking System.
How do we ๐๐ฒ๐ฐ๐ผ๐บ๐ฝ๐ผ๐๐ฒ ๐ฅ๐ฒ๐ฎ๐น ๐ง๐ถ๐บ๐ฒ ๐ ๐ฎ๐ฐ๐ต๐ถ๐ป๐ฒ ๐๐ฒ๐ฎ๐ฟ๐ป๐ถ๐ป๐ด ๐ฆ๐ฒ๐ฟ๐๐ถ๐ฐ๐ฒ ๐๐ฎ๐๐ฒ๐ป๐ฐ๐ and why should you care to understand the pieces as a ML Engineer?
Usually, what is cared about by the users of your Machine Learning Service is the total endpoint latency - the time difference between when a request is performed (1.) against the Service till when the response is received (6.).
๐
Certain SLAs will be established on what the acceptable latency is and you will need to reach that. Being able to decompose the total latency is even more important as you can improve each piece independently. Let's see how.
๐๐ฝ๐ฎ๐ฐ๐ต๐ฒ ๐ฆ๐ฝ๐ฎ๐ฟ๐ธ is an extremely popular distributed processing framework utilizing in-memory processing to speed up task execution. Most of its libraries are contained in the Spark Core layer.
๐
As a warm up exercise for later deeper dives and tips, today we focus on some architecture basics.
In its simplest form Data Contract is an agreement between Data Producers and Data Consumers on what the Data being produced should look like, what SLAs it should meet and the semantics of it.
What does a ๐ฅ๐ฒ๐ฎ๐น ๐ง๐ถ๐บ๐ฒ ๐ฆ๐ฒ๐ฎ๐ฟ๐ฐ๐ต ๐ผ๐ฟ ๐ฅ๐ฒ๐ฐ๐ผ๐บ๐บ๐ฒ๐ป๐ฑ๐ฒ๐ฟ ๐ฆ๐๐๐๐ฒ๐บ ๐๐ฒ๐๐ถ๐ด๐ป look like?
The graph was inspired by the amazing work of @eugeneyan
Recommender and Search Systems are one of the biggest money makers for most companies when it comes to Machine Learning.
๐
Both Systems are inherently similar. Their goal is to return a list of recommended items given a certain context - it could be a search query in the e-commerce website or a list of recommended songs given that you are currently listening to a certain song on Spotify.