2/First, you must understand the pathophysiology of “idiopathic” or iNPH. It was first described in 1965—but, of the original six in the 1965 cohort, 4 were found to have underlying causes for hydrocephalus.
This begs the question—when do you stop looking & call it idiopathic?
3/Thus, some don’t believe true idiopathic NPH exists. After all, it’s a syndrome defined essentially only by response to a treatment w/o ever a placebo-controlled trial.
However, most believe iNPH does exist--but its underlying etiology is controversial. Several theories exist
4/Think of the aging brain like an aging body. What happens when you get old?
First, you get stiffer. So do vessels in the brain, so they’re less pulsatile. Their pulsatility helps move CSF in the brain. So you get less CSF movement & CSF build up. Some believe this causes iNPH
5/Next, you get constipated—you have trouble getting rid of your waste. Same in the brain
Glymphatic system removes brain waste. Diminished arterial pulsations also cause inefficient glymphatic flow & waste build up. Some believe underlying glymphatic insufficiency causes iNPH
6/Finally, your prostate gets big & blocks your ability to get rid of fluid. Same for the brain.
NPH is associated w/sleep apnea—which blocks venous return/outflow & thus increases cerebral venous pressure—making it difficult to move CSF out of the brain into the venous system
7/How does iNPH cause symptoms?
Increased CSF expands ventricles. Expanding ventricles is like blowing up a balloon. Larger the balloon, the more surface pressure.
Larger ventricles lead to increased surface pressure & results in mechanical periventricular/ependymal damage
8/It also causes ischemia. Blood flow in the brain is from the surface vessels inward. But ventricular pressure is pushing outward.
This opposing pressure increases how much pressure blood needs to reach the deep parts of the brain, resulting in chronic deep ischemia
9/Similarly, solutes in your brain flow from the interstitial space to the CSF as a clearance mechanism
Increased pressure at the ventricular surface makes it harder for solutes to transit, thus resulting in build up of solutes like amyloid—causing damage just like Alzheimer’s
10/In fact, up to 2/3rd of NPH have underlying Alzheimer’s disease (AD) pathology. So it’s common for AD & NPH to coexist. NPH is a risk factor for AD!
This is why gait problems in some NPH patients are helped by shunting, but the dementia is not—bc there’s also underlying AD
11/So the classic question of “are the imaging findings related to volume loss/AD or hydrocephalus/NPH” isn’t really a fair question—bc it’s often both.
But shunting in NPH even w/AD can still help by improving gait & decreasing falls. So when do you suggest NPH on imaging?
12/There’s an iNPH Radscale, which scores 7 different imaging features. Score above 8 is very sensitive for iNPH.
But who’s going to take out calipers & evaluate SEVEN different imaging findings on every dementia MR? Also this scale doesn’t predict who will respond to shunting
13/Measurements aren’t just burdensome, they also introduce inter-reader variability.
In fact, many of the Radscale measurements can vary depending on scan angle. Many are based on scans through the AC-PC line or perpendicular to it—& can change if the tech changes the angle
14/Luckily, the prospective SIHPHONI trial in NPH narrowed it down to 2 imaging criteria.
First is Evans index >0.3. This is the ratio of the max frontal horn diameter to the max cranial vault diameter—a ratio greater than 0.3 indicates hydrocephalus (of any kind) is present
15/An Evans index >0.3 means the ventricles look like the eyes of the mask that the killer wears in the “Scream” movies.
If the ventricles are so big that they look like horror movie mask eyes, it’s hydrocephalus. So if I see the eyes of a ghost mask looking at me, I call it.
16/So Evans >0.3 means hydro. How do we know the hydro is iNPH?
For this, SIMPHONI used the finding of tight medial CSF spaces but wide Sylvian fissures. Some call this disproportiately enlarged subarachnoid spaces (DESH). This specific type of DESH is best seen on coronals
17/I think that this finding makes the brain on coronal images look like a chipmunk.
Widened Sylvian fissures separate the temporal lobes from the rest of the brain, making them look like chipmunk cheeks & the tight vertex looks like the little chipmunk tuft of hair at the top
18/This separation of the temporal horn (chipmunk cheeks), is not typically seen in volume loss, where the sylvian fissures remain relatively closed.
So other forms of volume loss will look more like a mushroom & NPH will give you a chipmunk
19/In fact, seeing the combo of Scream horror mask & chipmunk face means that there’s a 70-80% the patient will respond to shunting—which is basically the NPH response rate in general!
So now you know to look for the chipmunk so you won’t have to squirrel around w/calling NPH!
• • •
Missing some Tweet in this thread? You can try to
force a refresh
2/Aneurysm rupture is a devastating even, as it results in subarachnoid hemorrhage & complications such as hydrocephalus, vasospasm, infarcts, & death.
Preventing it by treating aneurysms before they rupture is key. But you also don’t want to overtreat.
3/To remember what features make an aneurysm more likely to rupture, think what makes that guy at the bar that you angered more likely to rupture & start a fight.
What makes him more likely to rupture are the same things that make aneurysms more likely to rupture
1/Need help reading spine imaging? I’ve got your back!
It’s as easy as ABC!
A thread about an easy mnemonic you can use on every single spine study you see to increase your speed & make sure you never miss a thing!
2/A is for alignment
Look for: (1) Unstable injuries
(2) Malalignment that causes early degenerative change. Abnormal motion causes spinal elements to abnormally move against each other, like grinding teeth wears down teeth—this wears down the spine
3/B is for bones.
On CT, the most important thing to look for w/bones is fractures. You may see focal bony lesions, but you may not
On MR, it is the opposite—you can see marrow lesions easily but you may or may not see edema associated w/fractures if the fracture is subtle
1/Asking “How old are you?” can be dicey—both in real life & on MRI! Do you know how to tell the age of blood on MRI?
Here’s a thread on how to date blood on MRI so that the next time you see a hemorrhage, your guess on when it happened will always be in the right vein!
2/If you ask someone how to date blood on MRI, they’ll spit out a crazy mnemonic about babies that tells you what signal blood should be on T1 & T2 imaging by age.
But mnemonics are crutch—they help you memorize, but not understand. If you understand, you don’t need to memorize
3/If you look at the mnemonic, you will notice one thing—the T1 signal is all you need to tell if blood is acute, subacute or chronic.
T2 signal will tell if it is early or late in each of those time periods—but that type of detail isn’t needed in real life
1/Do radiologists sound like they are speaking a different language when they talk about MRI?
T1 shortening what? T2 prolongation who?
Here’s a translation w/an introductory thread to MRI.
2/Let’s start w/T1—it is #1 after all! T1 is for anatomy
Since it’s anatomic, brain structures will reflect the same color as real life
So gray matter is gray on T1 & white matter is white on T1
So if you see an image where gray is gray & white is white—you know it’s a T1
3/T1 is also for contrast
Contrast material helps us to see masses
Contrast can’t get into normal brain & spine bc of the blood brain barrier—but masses don’t have a blood brain barrier, so when you give contrast, masses will take it up & light up, making them easier to see.