), but there is also a 'bottom-up' method, which my @cmmid_lshtm colleagues have been using to track R... 2/
The basic idea is that R depends on four components: duration of infectiousness; opportunities for transmission (i.e. contacts); transmission probability during each opportunity; and population susceptibility... 3/
For respiratory infections that spread through face-to-face interactions, we can measure social contacts via surveys, and hence estimate how changes in 'opportunities' scale R. If average opportunities decline by a certain amount, so should the corresponding value of R. 4/
This is what my colleagues have tracked since March. After control measures were introduced, they estimated R declined to ~0.6 based on changes in conversational contacts. Soon after, this R<1 conclusion emerged in 'top-down' analysis of case data too. 5/
Towards the end of the summer, contacts started increasing and so did corresponding estimates of R - again, this increase has also been reflected in observed surveillance data. 6/
This approach is useful because it gives us clues about *why* R is changing, rather than just estimating by how much based on patterns in case data. It can also help us understand which contact patterns - and in which groups - are likely driving transmission 7/
Of course, ideally we'd eventually see a decoupling between social contacts and transmission, with reduction coming from testing & tracing (i.e. reducing effective infectious duration) or vaccine-induced immunity (reducing susceptibility), while allowing more interactions. 8/8
• • •
Missing some Tweet in this thread? You can try to
force a refresh
I’m seeing people share these kinds of plots on excess deaths to try and claim there isn’t COVID problem currently. But look at data for week 29 Mar 2020 - if this lagging metric had been used to drive action, nothing would've been done until *early April* (i.e. far too late) 1/
As anyone who’s worked on epidemics will tell you, there are imperfect data streams early on, and more conclusive data later. But as above shows, sitting around waiting for all the data is not an option in a fast moving outbreak. 2/2
A common feature of a growing epidemic is that the % of cases detected by surveillance systems typically declines (just as the % detected typically increases as epidemics are brought under control)... 1/
In week ending 24 Sep, ONS estimated around 8,400 new infections per day in England (ons.gov.uk/peoplepopulati…). And on 24 Sep, the 7-day average for daily reported cases in UK was around 6,800. 2/
By week ending 16 Oct, ONS estimate was around 35,000 new infections per day in England (ons.gov.uk/peoplepopulati…), with 7-day average for UK cases by 16 Oct at around 18,500. 3/
First, let's be clear about difference between a 'scenario' and 'forecast'. Scenarios explore specific 'what if' questions, e.g. 'What if we don't introduce any control measures?' - Below are some examples from the March Imperial UK modelling report (imperial.ac.uk/mrc-global-inf…). 2/
In contrast, epidemic forecasts provide an answer to the question 'What do we think is most likely to happen?' More on scenarios vs forecasts here: washingtonpost.com/outlook/2020/0… 3/
The COVID-19 pandemic has shown power of open data and analytics in research, but these activities often aren't recognised in traditional academic metrics. New perspective piece with @rozeggo & @sbfnk: journals.plos.org/plosbiology/ar…. I'd also like to highlight some examples... 1/
A short thread about a dead salmon and implausible claims based on epidemic curves... 1/
A few years ago, some researchers famously put an Atlantic salmon in an fMRI machine and showed it some photographs. When they analysed the raw data, it looked like there was evidence of brain activity... wired.com/2009/09/fmrisa… 2/
Now of course there wasn’t really any activity. It was a dead salmon. But it showed that analysing the data with simplistic methods could flag up an effect that wasn’t really there. Which leads us to COVID-19... 3/
'Herd immunity' has been reached during previous epidemics of influenza, measles and seasonal coronaviruses. But it's subsequently been lost (and then regained). What are some of the reasons for this? 1/
Here we're using technical definition of 'herd immunity', i.e. sufficient immunity within a population to push R below 1 in absence of other control measures. But reaching this point doesn't mean R will stay below 1 forever. Here four things to be aware of... 2/
A: Population turnover. Over time, new births mean an increase in % of population susceptible. This will eventually lead to R>1 and new (but smaller) outbreaks - the more transmissible the infection, the sooner this recurrence will happen. More: