Given age-stratified #TestTraceIsolate population wide CaseFatalityRates (nCFR), estimates were compared to cbs reported excess mortality, adjusted for absence of Influenza etc, and compared to the rivm estimated prevalence of contagious people:
Virus population prevalence, i.e. number of contagious people infecting R(0) contacts was generally higher for #B117 as compared to wildtype #SARSCoV2.
The virulence of #Alpha was generally higher than for previous variant(s).
Real time epi data allow for descripive analyses. Given population stratified, weighted data for age, testing, vaccination and mortality risk as indepent variables, a regression model can generate hypotheses:
Fatality% = -108.9 + 9.7 InfectionRisk% - 0.5 %Vaxx'd + 1.8 Age:
During the observed period a 1% risk of infection in the entire population increases population fatality risk by 10% independent of vaccination status and age.
However: Fatality risk dependent on age given a certain level of infection risk and vaccination is not linear related:
Vaccines prevent death and serious disease for the study population included in clinical trials as approved by health regulatory agencies.
Table of predicted group fatality risks at ~ 1% infection risk.
A negative number would indicate #zeroCovid risk, 0, niks, nada, nil 😃
Applying a multiple regression analysis to the current epidemiological situation, assuming infection risk and vaxx status will remain at the same level upcoming winter, an estimate of expected excess- and Covid19 population mortality could be generated.
Real time epi data allow for descriptive analyses. Given population stratified, weighted data for age, testing, vaccination and mortality risk as indepent variables, a regression model can generate hypotheses:
Fatality% = -108.9 + 9.7 Inf.Risk% - 0.5 %Vax'd + 1.8 Age:
Assuming infection risk and vax status will remain at the same level next 26 weeks; relatively high virus prevalence may lead to > 18.000 elderly #Covid19 preventable deaths (~20% of expected all cause cbs mortality), which is consistent with a continuous 10% excess mortality.
Disclaimer: Comparative data different sources is provided for generating hypotheses only, is not intended to be precise nor reliable. Rounding errors occur, data varies over time, new virus variants may pop-up again and population behaviour may change.
🧵 Whereas the model described⤴️ simply provides for a rational #zeroCovid policy,
the model described⤵️ proves, according to same logic, reducing community transmission #SARSCoV2 should be the ultimate goal of public health policies.
Indeed, @FT seems to derive at the same conclusion:
Mortality is closely linked to age. Unfortunately, even among the vaccinated, the age gradient remains.
There is no alternative to #zeroCovid public health.
Bij het sociaal-demografisch nogal gekleurde rapport over sterfte tijdens het eerste jaar van de Corona epidemie valt te overwegen dat een aantal medische- en ethische kwesties onderbelicht zijn gebleven.
Het eerste jaar van de Corona epidemie kenmerkt zich door het feit dat er geen Influenza- en RS virussen etc rondwaarden, als gevolg waarvan de zeer hoge sterfte uitsluitend kon worden toegeschreven aan de gevolgen van de #SARSCoV2 virusverspreiding.
Sterfte door Corona wordt door RIVM steeds schromelijk onderschat, waardoor betrouwbare schattingen slechts mogelijk zijn aan de hand van de wekelijks sterftecijfers van het CBS die vergeleken met 'verwachte' sterfte een nauwkeurig inzicht bieden in de werkelijke Corona sterfte:
Age stratified #SARSCoV2 testing data, confirmed and total Corona mortality, time-weighted fully vaccinated population at estimated 1,6% Coronavirus prevalence.
R2 = 1 and, predictors significantly explain 95.4% of variance in observed population % mortality dependent on infection risk, vaccination coverage and age category.