This is sweet 🥧 !
arxiv.org/abs/2202.01197
Finally a solid way of of teaching a neural network to know what it does not know.
(OOD = Out Of Domain, i.e. not one of the classes in the training data.) Congrats @SharonYixuanLin @xuefeng_du @MuCai7
The nice part is that it's a purely architectural change of the detection network, with a new contrastive loss which does not introduce additional hyper-parameters. No additional data required !
The results are competitive with training on a larger dataset manually extended with outliers: "Our method achieves OOD detection performance on COCO (AUROC: 88.66%) that favorably matches outlier exposure (AUROC: 90.18%), and does not require external data."
The trick is to generate OOD examples automatically for the contrastive loss. But instead of doing it with a GAN, which is hard and flaky, they do it directly in the final feature space, just before the classification head.
Sorry for the typo in the @ mentions. Correction: @SharonYixuanLi, @xuefeng_du, @MuCai7
Looks like this paper is going to the stratosphere. #1 on Arxiv now. Congratulations @SharonYixuanLi, @xuefeng_du, @MuCai7.

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Martin Görner

Martin Görner Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @martin_gorner

Feb 4
I like the "database layer" developed by DeepMind in their RETRO architecture:
deepmind.com/blog/article/l…
It teaches the model to retrieve text chunks from a vast textual database (by their nearest neighbour match of their BERT-generated embeddings) and use them when generating text
It's a bit different from the "memory layer" I tweeted about previously, which provides a large learnable memory, without increasing the number of learnable weights. (for ref: arxiv.org/pdf/1907.05242…)
This time, the model learns the trick of retrieving relevant pieces of knowledge from a large corpus of text.
The end result is similar: an NLP model that can do what the big guns can (Gopher, Jurassic-1, GPT3) with a tenth of their learnable weights.
Read 8 tweets
Feb 2
I'm humbled by the recent advances in NLP. I was testing this Keras model on @huggingface (huggingface.co/keras-io/trans…) using the abstract of a random (but good) ML article:
arxiv.org/pdf/2002.09405…
Q: "Which examples of simulated environments are given in the text ?"
A: "fluids, rigid solids, and deformable materials"
👍 spot on
Q: "What does this new model do better than previous instances ?"
R: "advances the state-of-the-art in learned physical simulation"
👍👍 yep!
Read 7 tweets
Aug 2, 2021
Here is Mask R-CNN, the most popular architecture used for object detection and segmentation.
The conceptual principle of the R-CNN family is to use a two-step process for object detection:
1) a Region Proposal Network (RPN) identifies regions of interests(ROIs)
2) The ROIs are cut from the image and fed through a classifier.
In fact, the cutting is not done the original image but directly on the feature maps extracted from the backbone. Since the feature maps are much lower resolution than the image, the cropping requires some care: sub-pixel extraction and interpolation aka. "ROI alignment".
Read 5 tweets
Jul 19, 2021
The MobileNet family of convolutional architectures uses depth-wise convolutions where the channels of the input are convolved independently.
Their basic building block is called the "Inverted Residual Bottleneck", compared here with the basic blocks in ResNet and Xception (dw-conv for depth-wise convolution).
Here is MobileNetV2, optimized for low weight count and fast inference.
Read 4 tweets
Jun 28, 2021
I made a ton of ML architecture illustrations for an upcoming book. Starting with good old Alex Net

The book: oreilly.com/library/view/p… by @lak_gcp, Ryan Gillard and myself.
and just as good and old VGG19:
Here is a SqueezeNet module.The pape rcalls them "fire
🔥 modules"
Read 4 tweets
Nov 28, 2019
Now reading the ARC paper by @fchollet.
arxiv.org/abs/1911.01547 “On the measure of intelligence” where he proposes a new benchmark for “intelligence” called the “Abstraction and Reasoning corpus”.
Highlights below ->
@fchollet Chess was considered the pinnacle of human intelligence, … until it was solved by a computer and surpassed Garry Kasparov in 1997. Today, it is hard to argue that a min-max algorithm with optimizations represents “intelligence”.
@fchollet AlphaGo took this to the next step. It became world champion at Go by using deep learning. Still, the program is narrowly focused on playing Go and solving this task did not lead to breakthroughs in other fields.
Read 32 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

:(