1/My hardest #tweetorial yet! Are you up for the challenge?

How stroke perfusion imaging works!

Ever wonder why it’s Tmax & not Tmin? Do you not question & let RAPID read the perfusion for you? Not anymore!
#stroke #neurotwitter #neurorad #meded #FOAMed #radtwitter #medtwitter
2/Perfusion imaging is based on one principle: When you inject CT or MR intravenous contrast, the contrast flows w/blood & so contrast can be a surrogate marker for blood. This is key, b/c we can track contrast—it changes CT density or MR signal so we can see where it goes
3/So if we can track how contrast gets to the tissue (by changes in CT density or MR signal), then we can approximate how BLOOD is getting to the tissue. And how much blood is getting to the tissue is what perfusion imaging is all about.
4/Clinically, there are 2 main perfusion parameters used: (1)Cerebral blood flow (CBF), which is how FAST blood gets to the tissue & (2) Tmax or time to max residue function. Everyone knows Tmax is used to estimate penumbra, but does anyone know what it really is??? You will now
5/Let’s start w/CBF. CBF is how FAST blood gets to tissue. We could estimate it by measuring how fast contrast accumulates in tissue—make a curve of the amount of contrast in a tissue over time. If the curve has a steep slope, contrast/blood is being delivered fast & CBF is high
6/Unfortunately, it’s not that simple. You can’t just measure the slope of the contrast curve in tissue to get CBF. Many things change how fast contrast travels besides just blood flow. If you inject more contrast or inject it faster—these increase how fast contrast washes in
7/If we can’t measure how fast contrast washes in to get CBF, we’ll measure how it washes out! If you want to measure river velocity, dropping in dye & measuring how fast it washes out gets the same answer as watching it wash in. But we can’t drop contrast directly in the brain!
8/So we must back calculate. Pretend we want to know how fast a kitchen prepares food—Restaurant Continental Breakfast Flow or rCBF. If we know when ingredients arrive & we know when food gets on our table, we can back calculate kitchen speed--& that’s what we do for the real CBF
9/When the ingredients arrive is the arterial input function. We measure over a cerebral artery to see when the blood first arrives. It’s equal to how long it takes the restaurant to get the ingredients from the supplier—how long it takes the artery to get blood after injection
10/How fast food is building up on our table is the tissue concentration. We measure in brain parenchyma to detect the buildup of contrast. How long it takes for blood to get from injection to tissue is equal to how long it takes ingredients to be turned into food on our table
11/Time for the kitchen to turn ingredients to food for the table is CBF. We want to find CBF by dropping contrast right in a brain artery & see how fast it washes out to tissue. This is kitchen time--the time for a blood drop to wash out from artery (kitchen) to tissue (table)
12/If we know:
1)Time for blood to get from injector to artery
2)Time to get from injector to tissue
We can then back calculate time it takes to get from artery to tissue.

So we use the arterial input function & tissue concentration to back calculate the artery to tissue time
13/This back-calculated artery to tissue time simulates dropping blood into a brain artery & watching it wash out—like our dye & river—the best way to find CBF

This back-calculated function is the "residue function"—not a real measurement in the brain, but a calculated entity
14/Residue function is what you would get if you dropped a perfectly tight bolus of blood into an artery & then watched it washout into tissue as it is replaced by fresh blood. It is exactly what we wanted to do w/dye in the river
15/The function is maximized the second you drop all that blood into the artery—before any washes out.

This is equal to the time it takes for blood to hit the artery—none has washed out.

So Tmax (time to max residue function) is the time it takes blood to reach the artery
16/The height of the residue function is CBF.

This is b/c the residue function represents the blood being dropped right into the artery & timing how long it takes to wash out.

So we calculate CBF by measuring the height of the residue function
17/Since Tmax is the time it takes for blood to reach the artery, it doesn’t take into account the time it takes blood to travel through the microvasculature to the tissue. So it isn’t affected by microvascular pathology—making it a great indicator of large vessel occlusion (LVO)
18/So now you know all the inner workings of the kitchen behind the numbers and names you seen in perfusion imaging.

May this be the Tmax of your knowledge function and leave you hungry for more!

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Lea Alhilali, MD

Lea Alhilali, MD Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @teachplaygrub

Dec 12
1/”I LOVE spinal cord syndromes!” is a phrase that has NEVER, EVER been said by anyone.
Never fear—here is a #tweetorial on all the incomplete #spinalcord syndromes!
#medtwitter #neurotwitter #neurology #neurosurgery #neurorad #radres #meded #FOAMed #FOAMrad #radtwitter #spine
2/Spinal cord anatomy can be complex. On imaging, we can see the ant & post nerve roots. We can also see the gray & white matter. Hidden w/in the white matter, however, are numerous efferent & afferent tracts—enough to make your head spin.
3/Lucky for you, for the incomplete cord syndromes, all you need to know is gray matter & 3 main tracts. Anterolaterally, spinothalamic tract (pain & temp). Posteriorly, dorsal columns (vibration, proprioception, & light touch), & next to it, corticospinal tracts—providing motor
Read 20 tweets
Dec 7
1/Have disagreements between radiologists on the degree of cervical canal stenosis become a pain in the neck?!
Here’s a #tweetorial on cervical stenosis grading that’s easy, reproducible & evidence based
#medtwitter #spine #neurosurgery #radres #neurorad #meded #FOAMed #FOAMrad Image
2/In the lumbar spine, it is all about the degree of canal narrowing & room for nerve roots. In the cervical spine, we have another factor to think about—the cord. Cord integrity is key. No matter the degree of stenosis, if the cord isn’t happy, the patient won’t be either Image
3/Cord flattening, even w/o canal stenosis, can cause myelopathy. No one is quite sure why. Some say it’s b/c mass effect on static imaging may be much worse in dynamic positions, some say it’s repetitive microtrauma, & some say micro-ischemia from compression of perforators Image
Read 18 tweets
Nov 28
1/Asking “How old are you” can be dicey—both in real life & on MRI! Do you know how to tell the age of blood on MRI?

Here’s a #tweetorial on how to date blood on MRI
#medtwitter #neurorad #radtwitter #RSNA2022 #RSNA22 #radres #neurosurgery #neurology #meded #neurotwitter #FOAMed Image
2/If you ask someone how to date blood on MRI, they’ll spit out a crazy mnemonic about babies that tells you what signal blood should be on T1 & T2 imaging by age

But mnemonics are crutch—they help you memorize, but not understand. If you understand, you don’t need to memorize Image
3/If you look at the mnemonic, you will notice one thing—the T1 signal is all you need to tell if blood is acute, subacute or chronic

T2 signal will tell if it is early or late in each of those time periods—but that type of detail isn’t needed in real life. So let’s look at T1 Image
Read 21 tweets
Nov 26
1/Tonsillar or peritonsillar abscess? That is the question! When you look at a neck CT, do you know which one to say?
A #tweetorial on #tonsillitis complications
#medtwitter #radtwitter #neurorad #radres #meded #FOAMed #FOAMrad #HNrad #medstudenttwitter #RSNA2022
2/First some anatomy. Palatine tonsils (or faucial to the cool kids) sit in the oropharynx between the two palatine arches: the palatoglossus arch in front and the palatopharyngeus arch in back. These are easily visible on physical exam.
3/These archs are actually just mucosa draped over the palatoglossus and palatopharygeus musculature, like kids drape sheets over themselves to dress up for Halloween.
Read 13 tweets
Nov 21
1/Ready for a throwdown? MMA fights get a lot of attention, but MMA (middle meningeal art) & dural blood supply doesn’t get the attention it deserves.

A #tweetorial on dural vascular #anatomy

#neurosurgery #neurorad #Neurointervention #radres #medtwitter #neurotwitter #meded
2/Everyone knows about the blood supply to the brain. Circle of Willis anatomy is king and loved by everyone, while the vascular anatomy of the blood supply to the dura is the poor, wicked step child of vascular anatomy that is often forgotten
3/But dural vascular anatomy & supply are important, especially now that MMA embolizations are common for chronic recurrent subdurals. It also important for understanding dural arteriovenous fistulas as well.
Read 17 tweets
Nov 11
1/They say form follows function! Brain #MRI anatomy is best understood in terms of both form & function

A #tweetorial on how to remember important functional #brain #anatomy

#meded #medtwitter #neurosurgery #neurology #neurorad #FOAMed #FOAMrad #radiology #medstudent #radres
2/Let’s start at the top. At the vertex is the superior frontal gyrus. This is easy to remember, bc it’s at the top—and being at the top is superior. It’s like the superior king at the top of the vertex.
3/It is also easy to recognize on imaging. It looks like a big thumb pointing straight up out of the brain. I always look for that thumbs up when I am looking for the superior frontal gyrus (SFG)
Read 12 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us on Twitter!

:(