🚨REVIEW PAPER🚨 #Hydrogen, a green energy carrier, is one of the most promising energy sources. However, it is currently mainly produced from depleting #FossilFuels with high #carbon emissions, which has serious -ve effects on the economy and environment. #HyBECCS #ATT
🧵 1/6
To address this issue, sustainable hydrogen production from bio-energy with #carbon capture and #storage (#HyBECCS) is an ideal technology to reduce global carbon emissions while meeting energy demand. 2/6
So, a recent review presents an overview of "the latest progress in alkaline thermal treatment (#ATT) of #biomass for #hydrogen production with #carbon storage, mainly focusing on the technical characteristics & related challenges from an industrial application perspective." 3/6
Additionally, the roles of alkali and catalyst in the #ATT process are critically discussed in the review, and several aspects that have great influences on the ATT process are expounded, such as:
🔸biomass types
🔸reaction parameters
🔸reactors 4/6
Review concluded that "compared with WGS, MEC, SMR, #biomass dark fermentation & gasification, #ATT of biomass for #H2 production has the benefits of:
🔸wide range of feedstocks
🔸low energy consumption
🔸high purity of H2
🔸#NegativeCarbonEmission from entire LC of biomass 5/6
Read the open access review on sustainable hydrogen production from bio-energy with carbon capture and storage (HyBECCS) here ⬇️ sciencedirect.com/science/articl…
🚨Two recent engineering studies examine whether H2-powered aircraft can reliably deliver large payloads to the lower stratosphere for #SAI.
The papers compare a conventional tube-wing aircraft & a canard-wing alternative, analyzing design feasibility & performance limits🧵1/14
2/ Delivering aerosols to these altitudes with large payloads is difficult using existing aircraft.
Both studies explore H2 propulsion b/c it offers high gravimetric energy density & zero CO₂e, potentially enabling long-duration missions without adding direct C emissions
3/ To enable comparison, both designs are evaluated against the same core mission:
• Climb and cruise at 65,000 ft
• Sustain flight for ~3.5 hours
• Deliver a ~50,000 lb aerosol payload
• Operate near aerodynamic and propulsion limits typical of the lower stratosphere
For smallholder agroforestry, traditional methods are labor-intensive, expensive & hard to scale. As a result, farmers are locked out of climate finance.
3/ So, in this study researchers used an approach "DiameterAlgorithm," a non-contact method that estimates tree diameter (DBH) from a single photograph.
Instead of manual tapes or costly sensors, it relies on computer vision and a simple reference tag placed on the tree.
🚨Monthly Solar Geoengineering Updates (Dec Edition)
From NCAR’s possible shutdown & the Guardian’s sun-dimming debate to an African-led #SRM hub, the EU’s first governance conference & new studies, SRM dominated headlines and labs alike.
Top 10 SRM Highlights (Dec 2025)🧵1/8
1️⃣ Trump administration plans to dismantle NCAR, a leading hub for climate & SRM research
2️⃣ Guardian editorial sparks debate, warning of “sun-dimming” under political control. In response, letters argue research shutdown stifles science & misrepresents African perspectives.
2/
3️⃣ DSG launches SRM Governance Horizons, a project to assess institutional readiness and inclusive governance for solar radiation modification debates.
4️⃣ Sandro Vattioni wins China’s 2025 Pineapple Science Award for research on diamond dust as a potential SRM material.
🚨What if old clothes could power cities & remove CO₂?
New study shows that modular bioenergy with carbon capture (#BECCS) using discarded textiles can cut emissions, beat landfilling on env impacts & deliver durable #CDR at costs competitive with today’s CDR markets.
🧵1/10
2/ ~92 Mt of textile waste are generated globally each year. Roughly half is biogenic (e.g., cotton), meaning it already represents stored atmospheric CO₂ captured by plants during growth.
Yet ~66% of US textiles are landfilled, releasing GHGs & pollutants over time.
3/ In this study, researches model a 100 t/day modular waste-to-energy plant using:
• 100% cotton textiles
• 50/50 cotton–PET blends
Each case is assessed with and without CCS and compared to landfilling using full LCA + techno-economic analysis.
🚨Can land-based and ocean-based #CarbonRemoval work together, without undermining each other?
A new Earth system modeling study shows that combining BECCS & OAE delivers near-additive CO₂ removal, cutting ~23 ppm by 2100, while exposing critical Earth-system feedbacks.
🧵1/11
2/ As emissions cuts lag, most 1.5–2°C pathways now rely on carbon dioxide removal.
But the real question isn’t which CDR method is best, it’s what happens when multiple CDR approaches are deployed together inside the real climate system.
3/ To answer this, researchers used the Norwegian Earth System Model, simulating the period from 2030 to 2100 under an overshoot scenario where CO₂ first rises, then falls into net-negative territory.
This allowed them to track long-term land, ocean, and atm responses.