✍️"Policy concern: whether forests should be left unharvested to reduce CO2 #emissions & store C, or harvested to take advantage of potential #CarbonStorage & #removal."
🧵1/8
So, new study addressed this issue "by examining C rotation ages that consider commercial timber and C values. A discrete-time optimal rotation age model is developed that uses data on C #fluxes stored in living & dead biomass as opposed to C as a function of timber growth." 2/8
"Carbon is allocated to several ecosystem and post-harvest product pools that decay over time at different rates. In addition, the timing of #CarbonFluxes is taken into account by weighting future carbon fluxes as less important than current ones." 3/8
Using simple formulae for determining optimal 𝐂 𝐫𝐨𝐭𝐚𝐭𝐢𝐨𝐧 𝐚𝐠𝐞𝐬, this study draws the following conclusions:
1️⃣ "Reducing the price of timber while increasing the price of #carbon will increase rotation age, perhaps to infinity (stand remains unharvested)." 4/8
2️⃣ "An increase in the rate used to discount physical carbon generally reduces the rotation age, but not in all cases."
3️⃣ "As a corollary, an increase in the price of #carbon increases or reduces rotation age depending on the weight chosen to discount future #CarbonFluxes." 5/8
4️⃣ "Site characteristics and the mix of species on the site affect conclusions 2️⃣ and 3️⃣."
5️⃣ "A large variety of #CarbonOffset credits from forestry activities could be justified, which makes it difficult to accept any." 6/8
📜🌲 Read the open-access paper entitled: "Determining optimal forest rotation ages and carbon offset credits: Accounting for post-harvest carbon storehouses," here ⬇️ onlinelibrary.wiley.com/doi/full/10.11…
🚨New Viewpoint published in Frontiers that responds to Siegert et al.’s paper.
While Siegert et al. warn against polar #geoengineering, Moore et al. argue for a compassionate harm-reduction paradigm, keeping geoengineering research open alongside decarbonization.
Their case: interventions are risky, may not work, and could distract from the essential task which is deep decarbonization.frontiersin.org/journals/scien…
3/ Moore et al. [] reply that this “consequences-based paradigm” (raising alarms to spur action), has dominated climate science for 50 years.
🚨New Nature Geoscience study shows that blooms of Phaeocystis antarctica (microalgae) in the Southern Ocean ~14,000 yrs ago massively drew down CO₂, stabilizing climate. Their decline today could have global consequences.
#CarbonSink #CarbonDrawdown
Details🧵1/9
2/ Microalgae are pivotal in the Southern Ocean carbon cycle.
A new study from the Alfred Wegener Institute (AWI) reveals that during the Antarctic Cold Reversal (14.7–12.7k yrs BP), algal blooms slowed the rise of atmospheric CO₂.
3/ At the end of the last ice age, the Antarctic Cold Reversal brought vast winter sea ice followed by strong spring melt.
These unique conditions fueled Phaeocystis antarctica blooms, exceptionally efficient at capturing and exporting carbon.
🚨Researchers at the KAIST and the @MIT have developed a new fiber-based material that can capture CO2 directly from the air using only small amounts of electricity, potentially lowering the barriers to large-scale deployment of direct air capture (#DAC) technology.
DETAILS🧵1/8
2/ DAC systems, which remove CO2 directly from ambient air, have long been hindered by their high energy requirements.
With atm CO₂ concentrations at less than 400ppm, vast volumes of air must be processed, typically requiring large amounts of heat.
3/ The joint team, led by Professor Ko Dong-yeon of KAIST & Professor T. Alan Hatton of MIT, overcame this limitation by designing an electrically conductive fiber adsorbent (ethylenediamine EDA-Y zeolite/cellulose acetate (CA) fiber) that heats itself through Joule heating.
🚨In a new study published in @OneEarth_CP, researchers reveal that human land activities have stripped away roughly 24% of terrestrial carbon stocks (equivalent to 344 billion metric tons of C), underscoring an urgent need to reframe land-use & climate policy.
Details🧵1/10
2/ Plants + soils store more carbon than the atmosphere + all fossil reserves combined.
But farming, grazing, and forest use have stripped away this natural shield, turning land from a carbon bank into a carbon source.
3/ Researchers call this loss the terrestrial carbon deficit - the gap between what ecosystems could hold (‘potential’) vs. what they actually hold (‘actual’).