Gro-Tsen Profile picture
21 Mar, 25 tweets, 6 min read
I've written a blog post about generalizing the SIR model to the case of variable (=heterogeneous) susceptibility. It's in French, so let me translate the key points in a Twitter thread because I think this is important and deserves more attention. •1/25 madore.org/~david/weblog/…
Just in case, I mention that Google Translate seems to do a fairly decent job on my blog post (though it does mess up the formula formatting): translate.google.com/translate?sl=f… — also, here's a Twitter thread in French which I'll mostly be translating below: •2/25
SIR is the most basic model in epidemiology, and is still much used by some (though with variations not relevant here). It's the one which predicts things like a herd immunity threshold at 1 − 1/R₀ (n.b.: in what follows, I'll write “κ” for R₀). •3/25
This SIR model makes a lot of simplifying hypotheses, among these the fact that the population is homogeneous, so everyone has the same susceptibility to the infection (the same probability of being infected at a given time). •4/25
What I wish to describe is what happens if susceptibility is variable in the population (some people are more susceptible than others): we assume known its (initial) distribution s₀ and try to model the effect on epidemic evolution. •5/25
But let me emphasize first that here I'm talking about variations in susceptibility, NOT infectiousness (→some people infect others more easily, e.g., “superspreaders”). The latter does not have, per se, any influence on the epidemic as a whole, it just averages out. •6/25
The intuitive idea, which I've explained many times before, is that if some people are more susceptible, they will be infected — so made immune — earlier on, so as immunity accumulates, not only are there fewer susceptible people, they are also less susceptible on average. •7/25
So accumulation of immunity is made more efficient by this heterogeneity in susceptibility. And our goal is to model this in a mathematically precise way, and quantify the phenomenon. What's surprising is how well this works! •8/25
(All of this is essentially due to work by @mgmgomes1 and her coauthors, and probably all contained in the paper arxiv.org/abs/2008.00098 — I reworked it and reformulated it myself, but the ideas, as far as I know, are hers.) •9/25
Classical SIR in one tweet is this system of diff eqns:
‣ ds/dt = −β·i·s
‣ di/dt = β·i·s − γ·i
‣ dr/dt = γ·i
‣ (s+i+r=1)
with t being time, s,i,r proportions of susceptible, infected and recovered, β contagiousness, γ recovery rate and reproduction number κ := β/γ.
•10/25
It predicts in particular: an initial exponential growth with rate (=log slope) β, a herd immunity threshold at 1 − 1/κ, and a final attack rate of 1 + W(−κ·exp(−κ))/κ ≈ 1 − exp(−κ), where W is the Lambert transcendental function. •11/25
Moving to a heterogeneous susceptibility is remarkably easy: everything can be computed from the (initial) distribution s₀ of susceptibility through its Laplace transform φ (meaning φ(u) := 𝔼(exp(−u·X)) where 𝔼:=“expected value”, … •12/25
… and X is a random variable distributed following the initial susceptibility profile s₀ normalized by 𝔼(X)=1, viꝫ φ′(0)=−1). In fact, in SIR we just replace β·i·s (new infections term) by −β·i·φ′(φ⁻¹(s)) to get the heterogeneous model! •13/25
In other words, the equations for heterogeneous SIR are as follows:
‣ ds/dt = β·i·φ′(φ⁻¹(s))
‣ di/dt = − β·i·φ′(φ⁻¹(s)) − γ·i
‣ dr/dt = γ·i
‣ (s+i+r=1)
where φ is the (known) Laplace transform, φ⁻¹ its inverse function and φ′ its derivative.
•14/25
The classical SIR case, where the susceptibility profile s₀ is a δ distribution at 1, corresponds to φ(u) = exp(−u). Another important case is exponential distribution s₀(x) = exp(−x), giving φ(u) = 1/(1+u). I'll discuss the Γ distribution, generalizing this, below. •15/25
In fact, the epidemic evolution can be read from φ: it partially solves the differential equations (namely, we constantly have s = φ(κ·r), where κ := β/γ) and makes it possible to compute the herd immunity threshold and final attack rate, as I now explain. •16/25
The herd immunity threshold is the point where graph of φ has slope −1/κ (recall that κ := β/γ is the reproduction number), the final attack rate is the intersection of this graph with the line (also of slope −1/κ) through (0,1) and (κ,0) having abscissa >0. •17/25
(In the previous tweet, by “is the point where”, I mean that the point has coordinates (κ·r, s), and 1−s is the sought-after quantity. The original system can be described as the evolution of a point on the graph of φ with these coordinates.) •18/25
One important special case of susceptibility distribution is the Γ distribution, having relative variance v, say (inverse of the “shape” parameter). The exponential distribution is a special case of this (namely v=1), and the homogeneous case is the v→0 limit. •19/25
For this Γ distribution, we have φ(u) = (1+u·v)^(−1/v) and the equations are obtained by replacing β·i·s in classical SIR by β·i·s^(1+v), namely:
‣ ds/dt = −β·i·s^(1+v)
‣ di/dt = β·i·s^(1+v) − γ·i
‣ dr/dt = γ·i
‣ (s+i+r=1)
•20/25
What consequences does this have?
✱ Initially the epidemic still follows an exponential curve with rate β, as in the homogeneous case.
✱ But as a (small) amount of immunity accumulates, it is now 1+v times more effective at reducing the effective reproduction number, …
•21/25
… because when a proportion s<1 of population is susceptible, average susceptibility is now reduced to s^v (rel. to what it was initially).
✱ Herd immunity threshold, final attack rate and peak infection fraction are reduced w.r.t classical SIR (see graphs below).
•22/25
☞ Note: failing experimental data, I see no particular reason to believe that v=0 should be a better epidemic model than another value. Dimensional analysis suggests we assume v~1 (exponential) a priori. If, say, children are almost immune, clearly v=0 cannot hold! •23/25
Here are curves illustrating the dynamic for basic reproduction number κ=3 with v=0 left (=classical SIR =homogeneous) and v=1 right (exponential distribution). S is green, I is red, R is blue and effective reproduction number is black (bottom-right graph). •24/25
The herd immunity threshold is 1 − κ^(−1/(1+v)) (red below) and final attack rate is the >0 solution to (κ·v·r+1)^(−1/v) + r = 1 (blue). Here are their graphs in function of v for reproduction numbers κ=2 (solid), 3 (dashed), 4 (dotted). •25/25

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Gro-Tsen

Gro-Tsen Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @gro_tsen

21 Mar
Je me suis baladé avec @Conscrit_Neuneu hier (du côté du plateau de Saclay) et aujourd'hui (dans la forêt de Verrières), et je suis ravi de voir qu'il y avait PLEIN de monde dehors. Les gens semblent vraiment avoir capté le message «sortez», c'est super positif, ça.
Quand je dis «plein de monde», comprenons-nous bien: les distances entre familles restaient largement suffisantes pour qu'on puisse considérer le risque comme complètement négligeable, surtout pour un éphémère croisement. Mais les parkings forestiers étaient pleins.
Tout le contraire d'il y a un an et le stupide message «restez chez vous»: vers la mi-avril 2020, on ne croisait personne, fraudant le confinement, dans la forêt de Verrières. Là on évolue enfin vers une mentalité différente. Faut vraiment espérer que le beau temps tienne!
Read 4 tweets
21 Mar
J'essaie de résumer les points importants en quelques tweets (l'entrée de blog est là: madore.org/~david/weblog/…‌): ⤵️ •1/17
Le modèle SIR est le modèle épidémiologique le plus basique, et encore très utilisé (avec des variations pas vraiment pertinentes ici) par les modélisateurs. C'est lui notamment qui prédit la formule 1 − 1/R₀ pour le seuil d'immunité collective (je noterai “κ” pour R₀). •2/17
Mais ce modèle SIR fait plein d'hypothèses simplificatrices assez invraisemblables, entre autres que la population est homogène, et notamment, que tout le monde a la même susceptibilité à la maladie (probabilité de l'attraper à un moment donné). •3/17
Read 17 tweets
21 Mar
Je viens de passer un temps totalement délirant à écrire un article dans mon blog sur l'adaptation du modèle SIR au cas d'une susceptibilité hétérogène dans la population:
madore.org/~david/weblog/…
J'essaierai d'en faire un résumé sur Twitter plus tard (et aussi de redire les points les plus importants en anglais, d'ailleurs), mais je trouve que c'est vraiment important (et surprenant que ça se traite si bien!).
Je viens de faire un fil résumé ici: — il faudra encore que je le traduise en anglais, d'ici là je veux bien des retours pour savoir si c'est clair.
Read 5 tweets
19 Mar
Je réponds à ça un peu longuement parce que je vois souvent cette surenchère du seuil d'immunité collective (même si je n'avais pas encore vu ça s'agissant des vaccins!), et qu'il y a plein de choses à préciser: ⤵️ •1/35
D'abord, le seuil d'immunité collective par infection n'est 1 − 1/R₀ que pour une population parfaitement homogène avec mélange parfait (toute personne a exactement les mêmes chances de contaminer toute autre personne dans chaque période de temps). •2/35
Si ces hypothèses ne sont pas vérifiées, le seuil sera différent, normalement vers le bas, pour la raison que j'ai souvent expliquée: les personnes les plus exposées seront immunisées en premier et freineront d'autant plus efficacement l'épidémie. •3/35
Read 35 tweets
19 Mar
Je vois en gros quatre axes dans les décisions d'hier du gvt:
ⓐ retour des attestations + limite déplacements,
ⓑ plus d'insistance sur le télétravail,
ⓒ fermetures variées (commerces, lycées un peu),
ⓓ accélérer la vaccination.
Selon moi, le ⓐ est très contre-productif et contredit leur propre message:

Le ⓑ est sensé, et probablement efficace si mené sérieusement.

Le ⓒ est vraisemblablement efficace mais d'un coût exorbitant.

Le ⓓ est indiscutablement efficace mais lent.
(Après, je ne sais pas combien ⓑ et ⓓ seront menés sérieusement. Si ⓒ commence par la fermeture des rayons de chaussettes, je suis un peu pessimiste!)
Read 8 tweets
19 Mar
Ce fil est digne d'Eric Feigl-Ding. Si je résume ce que j'ai compris ce qu'il dit, il veut un confinement total jusqu'à vaccination de 85% de la population, et encore, si ça se trouve l'immunité collective ça n'existe même pas, donc au-delà.
(Il paraît que le concept de personne vulnérable est devenu «obsolète» face aux nouveaux variants. J'imagine donc que maintenant qu'ils sont majoritaires, la part des 30–39 ans en réanimation a dû s'envoler depuis la mi-novembre? Ah non, tiens, c'est toujours ~2%.)
Ah oui, et il paraît qu'il n'y a que 2.3% de vaccinés au Royaume-Uni, parce que vacciné c'est avec 2 doses uniquement. Veuillez donc ignorer les rapports des autorités britanniques qui observent 73% à 90% d'efficacité des vaccins 2–3 semaines après 1 dose. assets.publishing.service.gov.uk/government/upl…
Read 6 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Too expensive? Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal Become our Patreon

Thank you for your support!

Follow Us on Twitter!