1) There was an ACIP meeting today, but nothing newsworthy happened. CDC briefing materials (as posted at cdc.gov/vaccines/acip/…) are limiting the ability of ACIP to independently and intelligently assess data.
2) Most concerning, CDC continues to withhold J&J data by omitting it entirely or lumping it together with the 10x larger Pfizer+Moderna data so it becomes a rounding error. No wonder ACIP is not able to make any recommendations specifically for J&J cdc.gov/vaccines/acip/…
3) But the data exist, and is becoming increasingly in plain sight, showing higher case and hospitalization rates for J&J than for Pfizer and Moderna in the real world against Delta
4) Also there was no discussion of how boosters may be useful beyond the boosted individual. Most disappointingly, there was no raising of the question of mixing boosters.
ACIP will only address the questions CDC asks them, but CDC is leaving out some very important ones.
• • •
Missing some Tweet in this thread? You can try to
force a refresh
2) The editorial takes the form of a metaanalysis of vaccine efficacy, but it's the worst statistical malpractice I've ever seen. Fortunately it's short (one figure of 4 panels), so hopefully we can get through it quickly and point out the major issues.
Panel A: What is this??? Studies are grouped by efficacy ranges of 50-80, 80-90, and 90-100 for disease, then their average efficacy for all disease and severe disease are plotted. Why??? I'll try to be polite but I'm upset by this. It's an insult to human intelligence.
And before anyone complains the CIs are overlapping, that's a sophomoric complaint. Remember that's the 95% CI, and 95% is an arbitrary bar. Also there are other data that show J&J's lower effectiveness on hospitalization, such as below (pre-Delta)
You may recall on August 6 the SA trial announced 71% effectiveness against Delta hospitalization, but didn't say anything about effectiveness against disease, which is the default metric and the one used if you are gonig to report only one number.
Some surmised that effectiveness against Delta disease must be very unimpressive, or else it would have been reported alongside the hospitalization numbers on 8/6 (which were already unimpressive).
🧵We discussed how mucosal antibodies function to block SARSCoV2 infection. A study on this just posted from my Stanford colleague Michal Tal and UToronto collaborator Jennifer Gommerman.
Interesting: RNA and J&J make Abs in saliva, but neutralizing levels only detected with RNA
2) First, as a reminder, the role of mucosal antibodies (thought mostly to be IgA, but we'll revisit that in a moment) is to block viruses, once they land on your mucous membranes, from entering your cells.
In a recent thread I posited that mechanisms of antibody production, viral resistance, and somatic hypermutation can explain why pre-Delta vaccines block most Delta infections but not peak virus levels once infected, yet still limit late disease.
Most neutralization of SARSCoV2 infection is performed by antibodies against the spike (S) protein, and the vaccines used in the US include only S and no other parts of SARSCoV2, so we'll concentrate on S as the antigen, i.e. the protein targeted by antibodies or T cell receptors
Your body has millions to billions of resting/naive B cells, each with an unique surface-bound antibody or immunoglobulin (Ig), just waiting to find their match to foreign particles. You also have T cells with unique T cell receptors (TCRs) ncbi.nlm.nih.gov/pmc/articles/P…
In our @nytimes opinion piece, Dr. Paul Sax (Brigham and Women's Hospital) and I present why the data support RNA boosters for immunocompromised J&J patients, now possible off-label.
And when boosters kick in for everyone, we hope #JnJers are given good options at the same time.
And that's why we think the data we have sitting in databases on J&J VE need to be openly discussed, and why boosters for #JnJers are needed at least at the same time as boosters for everyone else.