Rosana Ferrero 📈📊🙌 Profile picture
Oct 31, 2022 12 tweets 13 min read Read on X
🤯Tercer y última parte de ERRORES QUE DAN MIEDO en #DataScience 🎃

☠️ERRORES mortales que incluso los expertos cometen⚰️
rosanaferrero.blogspot.com/2016/09/los-7-…

Continúa leyendo, si te atreves...👻
#HorrorStats #HappyHalloween #DataAnalytics #Halloween #FelizLunes #dataviz #RStats #Python #ML
🚫No realizar una investigación reproducible💀

“Every analysis you do on a dataset will have to be redone 10-15 times before publication. Plan accordingly” Trevor A.Branch

No crear un informe replicable, reproducible y reutilizable sí que DA MIEDO

#HorrorStats #HappyHalloween
🚫No seleccionar la prueba de hipótesis o el modelo de regresión correcto para tu objetivo🎃

¿Cuáles son las hipótesis? ¿Cómo son las muestras? ¿Qué tipo de prueba/modelo elegir? ¿Una cola o dos colas? ¿Qué hacer si mis datos no cumplen los supuestos? BOOO!! 👻

#HorrorStats #ML
🚫No distinguir la significación estadística de la significación práctica🤦🏻‍♀️p-valor nos dice la dirección y tamaño del efecto la magnitud

Que exista una diferencia no significa que sea grande

Muestras muy grandes detectan diferencias muy pequeñas. Big Data da MIEDO!
#HorrorStats
🚫Decir "se comprueba la hipótesis nula H0" o "H0 es cierta"

👉Así como la falta de evidencia no demuestra que el acusado es inocente, un resultado no estadísticamente significativo (e.g. p>.05) no demuestra que H0 sea verdadera. Solo “no hay suficiente evidencia"💀
#HorrorStats
🚫Decir "el p-valor es la probabilidad de que H0 sea cierta"

😱Las hipótesis son o no son. p-valor mide la fuerza de la evidencia contra H0. A menor p-valor, mayor evidencia contra H0 a largo plazo🧙

Sientes ESCALOFRÍOS?
#HorrorStats #DataScience #Halloween2022 #RStats #Python
🚫Considerar que el nivel de significación alfa=5% es un mandamiento⛪️

😉El valor 5% es simplemente una convención conveniente, podría ser el 10% o el 1%, no existe un umbral real.

🎃#HorrorStats #DataScience #RStats #Python #Analytics #dataviz #analisisdedatos 👻
Lee más👇
🚫No informar el p-valor exacto ni los resultados completos de la prueba de hipótesis.

😱p-valor depende de:
📌tamaño de efecto (ES), ES grandes son más fáciles de detectar.
📌tamaño de muestra (N). muestras grandes dan pruebas más sensibles
📌Diseño de estudio...

#HorrorStats
🚫No considerar el Error tipo III: resolver el problema incorrecto.

☠️¿Las hipótesis son las correctas? ¿Cuán plausible es H0? ¿Cuáles son las consecuencias de rechazar H0? El contexto es crucial

👻#HorrorStats #Halloween #Halloween2022 #DataScience #dataviz #RStats #Python 🎃
🚫Desconocer la potencia estadística

¿Alguna vez te lo has preguntado?
👉¿Puedo confiar en el resultado?
👉¿Cuántas muestras necesito?

Conocer la potencia estadística nos permite ahorrar tiempo y dinero en nuestras investigaciones, ¡¿cómo no te lo contaron antes?!

#HorrorStats
Interpretar correctamente los resultados de un análisis puede ser muy difícil😱

😎Para volverte un PRO en #DataScience no cometas los errores que te he mostrado en este hilo y usa esta guía para planificar y diseñar investigaciones rigurosas👇
#Halloween
maximaformacion.es/recursos/disen…
Recuerda👇

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Rosana Ferrero 📈📊🙌

Rosana Ferrero 📈📊🙌 Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @RosanaFerrero

Dec 31, 2024
✨✨ Mis post más populares de 2024 sobre #RStats ✨✨

Aquí tienes los favoritos de la comunidad, cargados de tips, herramientas y mejores prácticas. ¡No te los pierdas! 👇

#code #programming #stats #analytics #datascience #data #AI #IA #ML
🔥 IA y R: ¡Lo mejor del año!
✅ Asistente de IA para Shiny buff.ly/408Mmjp
✅ LLM en R y Python (paquete mall): buff.ly/3ZKFPKc
✅ Paquete “ask” en R para analytics con IA buff.ly/40aRFz1
✅ Integra IA en R: Guía paso a paso: buff.ly/4iQ7RwO Image
Image
📊 Visualización y análisis simplificados
✅ Las mejores tablas de resumen con R: buff.ly/409firq
✅ Tablas de resumen (semi) automáticas con R: buff.ly/3PgT0O8 y buff.ly/41JUubo
✅ PCA (semi) automático en R: buff.ly/3VVs3TU Image
Image
Image
Image
Read 6 tweets
Dec 29, 2024
🔥🔥 Mis post más populares sobre #stats #datascience y #analytics en 2024 🔥🔥

✨Este año ha estado lleno de aprendizajes, reflexiones y debates apasionantes. Aquí tienes los artículos sobre estadística y análisis de datos que más resonaron en la comunidad. ¿Te los perdiste?👇🏻
🎯 Conceptos que DESPEJAN dudas:
✅ ¿Por qué APRENDER estadística si el SOFTWARE/IA lo puede hacer todo por ti? buff.ly/41RK8WW
✅ ¿Cómo definir preguntas de investigación adecuadas? buff.ly/3Pdddof
✅ Valores atípicos e incluyentes: buff.ly/3PdlRDe
✅ El R2 no es lo que crees: buff.ly/3PdxppU y buff.ly/3Drg36k
✅ Calidad de los datos: buff.ly/3Dv06MJ

📉 Errores y sesgos que NO puedes ignorar:
✅ Sesgo de supervivencia (datos ausentes y diseños de estudio): buff.ly/3ZTQ8M3
Read 10 tweets
Dec 13, 2024
🚨 Mitos acerca de los intervalos de confianza 🚨

💡 Los IC, tan populares en investigación, a menudo se malinterpretan y se utilizan para obtener conclusiones equivocadas. 🧠

🔍 Lo que crees vs. Lo que realmente son los IC: 👇🧵🔥

#stats #rstats #analytics #datascience #data Image
Mito 1️⃣
❌ Un IC del 95% contiene el valor verdadero del parámetro con una probabilidad del 95%.
✅ Realidad: No. El IC solo garantiza que, si repites el muestreo, el 95% de los IC incluirán el valor verdadero. Es sobre los procedimientos repetidos, ¡no sobre un IC específico!😬
Mito 2️⃣
❌ El ancho del IC mide directamente la precisión de la estimación.
✅ Realidad: No
👉 Variabilidad en los datos: Más variabilidad → IC más amplio.
👉 Tamaño de la muestra: Muestras más grandes → IC más estrecho.
👉 Nivel de confianza elegido: Mayor NC → IC más amplio.
Read 7 tweets
Dec 11, 2024
😱 El error más frecuente de un análisis de datos... ¡SÍ, ESTÁ AQUÍ! 🔥

¿Crees que los valores atípicos y valores ausentes son el peor enemigo en tu análisis? Pfff, amateur. El verdadero peligro acecha en un rincón mucho más oscuro: ¡la falta de contexto! 💣

#stats #datascience
🧐 El verdadero reto en un análisis de datos no es la preparación de datos ni la elección de algoritmos, sino el diseño de estudio y la pregunta de investigación. Sin una base sólida, todo tu análisis será como un castillo de naipes. 🏰🌪️

#analytics #research #Investigación
💡 Un diseño de estudio adecuado es la base de todo
🎯 La calidad de los resultados no solo depende de la calidad de los datos y el modelo seleccionado, sino también de la validez del diseño de estudio que les dio forma.
buff.ly/3OEeeWc
Read 6 tweets
Dec 6, 2024
👀 ¿Qué pasaría si el PCA hiciera su propio informe? 🤖

🔥 Con FactoInvestigate, el análisis de componentes principales (PCA) no solo examina tus datos, ¡también genera un informe completo automáticamente! 📝 Pero aquí está lo importante: el control siempre es tuyo.💪🧵

#rstats Image
😱 Con el FactoInvestigate en R puedes generar un informe completo en solo una línea de código.🚀

💡¿Qué es el PCA y por qué usarlo?
✅ Reducir la dimensión de tus datos sin perder información clave
✅ Identificar componentes más informativos
✅ Visualizar relaciones y patrones
🛠️ ¿Qué hace FactoInvestigate?
Automatiza todo el análisis:
🔍 Detecta valores atípicos automáticamente
📊 Identifica los componentes principales más relevantes
📈 Genera gráficos claros y llamativos para explorar tus datos
📝 Describe dimensiones y variables de manera sencilla Image
Read 4 tweets
Nov 30, 2024
🎯 ¿MÚLTIPLES PRUEBAS? ¡CUIDADO CON LOS FALSOS POSITIVOS! 🚨

¿Sabías que al realizar muchas pruebas estadísticas, la probabilidad de obtener resultados falsos “significativos” se dispara? 😱

👀 El mejor artículo sobre el tema: 📚

Y te lo explico 💪🧵👇 buff.ly/3ZcR0emImage
🔥 ¿Cuál es el problema?
Cada prueba estadística tiene una probabilidad de error tipo I (rechazar una hipótesis nula verdadera).

⏩ Realizas 1 prueba → Error esperado: 5% (si 𝛼=0.05).
⏩ Realizas 100 pruebas → Probabilidad de al menos 1 error: ¡casi el 100%! 😬 Image
Se llama Tasa de Error por Experimento (EER), y si no ajustas, tus resultados podrían ser pura casualidad.

💡 ¿Cuándo ajustar?
1️⃣ Estudios confirmatorios:
Es obligatorio si combinas múltiples pruebas en una conclusión final.
Ej: Ensayos clínicos que comparan varios tratamientos Image
Read 6 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Don't want to be a Premium member but still want to support us?

Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal

Or Donate anonymously using crypto!

Ethereum

0xfe58350B80634f60Fa6Dc149a72b4DFbc17D341E copy

Bitcoin

3ATGMxNzCUFzxpMCHL5sWSt4DVtS8UqXpi copy

Thank you for your support!

Follow Us!

:(