🚫No seleccionar la prueba de hipótesis o el modelo de regresión correcto para tu objetivo🎃
¿Cuáles son las hipótesis? ¿Cómo son las muestras? ¿Qué tipo de prueba/modelo elegir? ¿Una cola o dos colas? ¿Qué hacer si mis datos no cumplen los supuestos? BOOO!! 👻
🚫No distinguir la significación estadística de la significación práctica🤦🏻♀️p-valor nos dice la dirección y tamaño del efecto la magnitud
Que exista una diferencia no significa que sea grande
Muestras muy grandes detectan diferencias muy pequeñas. Big Data da MIEDO! #HorrorStats
🚫Decir "se comprueba la hipótesis nula H0" o "H0 es cierta"
👉Así como la falta de evidencia no demuestra que el acusado es inocente, un resultado no estadísticamente significativo (e.g. p>.05) no demuestra que H0 sea verdadera. Solo “no hay suficiente evidencia"💀 #HorrorStats
🚫Decir "el p-valor es la probabilidad de que H0 sea cierta"
😱Las hipótesis son o no son. p-valor mide la fuerza de la evidencia contra H0. A menor p-valor, mayor evidencia contra H0 a largo plazo🧙
🚫No informar el p-valor exacto ni los resultados completos de la prueba de hipótesis.
😱p-valor depende de:
📌tamaño de efecto (ES), ES grandes son más fáciles de detectar.
📌tamaño de muestra (N). muestras grandes dan pruebas más sensibles
📌Diseño de estudio...
🤯 Por piensas que con solo mirar coeficientes y R² tienes todo bajo control en tu modelo de regresión... 🤨
🔥 El Cuarteto de Anscombe: Cuatro datasets, un mismo modelo… pero con realidades completamente distintas. 🔥
🧵Soluciones...👇
#stats #analytics #datascience #DataViz
Estos cuatro conjuntos de datos tienen:
✅ Misma media en X e Y
✅ Misma varianza
✅ Misma correlación
✅ Mismos coeficientes de regresión
✅ Mismo R²
📉 Pero cuando los graficas… descubres el desastre 🤯
💡 Errores clave en un modelo de regresión:
❌ 1. Asumir linealidad sin verificarla
No todas las relaciones son lineales. Ajustar una línea recta a un patrón curvo es un error clásico.
Solución: Graficar y evaluar modelos más flexibles como regresión con splines o GAM.
¿No sabes qué modelo de regresión usar? ¿Te confunden los términos LM, GLM, GAMM y demás siglas raras? 🌀 LO INTENTARÉ EXPLICAR RÁPIDAMENTE ⏳💥👇🧵
#stats #analytics #datascience
📢 PASO 1: ¿Tu variable respuesta es continua?
✅ Sí → Modelo Lineal (LM) (SI SE CUMPLEN SUS SUPUESTOS).
🚫 No → ¡Sigue leyendo! 👇
📢 PASO 2: ¿Tu variable respuesta es binaria, de conteo o de proporciones?
✅ Sí → Modelo Lineal Generalizado (GLM) (elige la familia adecuada: binomial, Poisson, gamma, etc.)
🚫 No → Vamos más profundo. 👇
1️⃣🔥 Ocultan la variabilidad → ¡Pueden hacer que datos diferentes se vean iguales!😵
👉📊 Los barplots NO te muestran la forma real de los datos, solo la media y el error o la incertidumbre.
🚨Datos con distribuciones totalmente diferentes pueden parecer idénticos en un barplot.
2️⃣ 🤯 Malas comparaciones → ¡Pueden hacerte creer diferencias que no existen! 📉
👉📊 Si los tamaños de muestra son diferentes, los IC en los barplots pueden ser engañosos.
❌ Dos grupos =medias y !=N pueden generar IC que te hagan pensar que hay +o- incertidumbre de la real.
🔥 Crear gráficos con pruebas estadísticas suele requerir varios pasos, pero {ggstatsplot} lo hace todo en una sola línea de código. 👇🧵
✅ No necesitas copiar/pegar números en un informe: los gráficos ya contienen toda la información.
#rstats #stats #dataviz #datascience
🎯 #stats + #dataviz en 1 solo paso
✅ Gráficos con pruebas paramétricas, no paramétricas y robustas
✅ Formato APA listo para publicar 📑
✅ Muestra automáticamente N 📊
✅ Mezcla caja + violín para mejor visualización 🎻
✅ Incluye tamaños de efecto, IC y pruebas bayesianas
📌 Funciones:
📊 ggbetweenstats → Compara entre grupos (violín + caja)
📊 ggwithinstats → Compara dentro de grupos
📊 gghistostats → Histogramas
📊 ggscatterstats y ggcorrmat → Correlaciones
📊 ggbarstats y ggpiestats → Barras y pie
📊 ggcoefstats → Regresión y metaanálisis
🧐 Si quieres gráficos rápidos, elegantes y sin sufrir, prueba {tinyplot}🔥
✅ Gráficos en base R sin complicaciones
✅ Agrupaciones y leyendas automáticas en un solo paso
✅ Facetas sin sudar la gota gorda (olvídate de par(mfrow=...))
✅ Temas personalizables con un solo comando
📌 ¿Por qué deberías probar tinyplot?
1️⃣ Usa solo base R → sin dependencias, sin bloat.
2️⃣ Ultra ligero → instalación mínima, ideal para paquetes o scripts portables.
3️⃣ Drop-in replacement → si ya usas plot(), cambiar a tinyplot() es pan comido.
🎯 ¡Prueba esto AHORA MISMO en tu R! 🎯
install.packages("tinyplot")
library(tinyplot)
🚀🔮✨ATENCIÓN, DETECTIVES DE DATOS ✨🔮🚀
😉 Porque aprender programación también puede hacerse de forma práctica y entretenida, hoy te traigo un desafío que pondrá a prueba tus conocimientos de R y tidyverse: la adaptación del SQL Murder Mystery. 🔎
🕵🏻♂️ Este ejercicio interactivo te convertirá en un detective de datos que debe resolver un crimen analizando bases de datos policiales. Originalmente fue diseñado para SQL por pero aquí lo abordaremos utilizando R y tidyverse.
♻️ Adaptación de Naidoo (2019) y Goyal (2024).
✨ LO QUE VAS A HACER
🧐 Dominar el manejo de datos en R mientras resuelves un caso policíaco 😎
🔮 Explorar bases de datos
🛡️ Rastrear pistas clave para acercarte al culpable
💪 Usar R y tidyverse para realizar consultas, filtrar datos y descubrir patrones ocultos.