🤖📚 Descubre las mejores herramientas impulsadas por #AI para la investigación académica y ahorra tiempo para hacer lo que más te gusta
📚 Accede a más información en menos tiempo!
🚀 Dale un impulso a tu investigación académica! #GPT#DataScience#science#chatGPT#research#ML
✅Scispace
Espacio de trabajo para automatizar tareas
Obtén una explicación simple de texto, matemáticas y tablas confusas
Haz preguntas de seguimiento y obtén respuestas instantáneas
Busca papers relevantes
Mejora la colaboración buff.ly/3gz7LhQ #Researchtools#science
✅Elicit
Automatiza flujos de trabajo
Encuentra papers relevantes sin palabras clave exactas
Resume conclusiones del documento específicas para tu pregunta
Extrae información clave de los documentos
Lluvia de ideas, resumen y clasificación de textos buff.ly/30DwBok #GPT4
✅Scite
Analiza artículos científicos y extrae info relevante
Identifica los papers +relevantes en tu dominio
Conoce los últimos desarrollos y tendencias
Accede a "citas inteligentes" para explorar el contexto en el que se cita un artículo.
De pago buff.ly/2IUks4a #AI
✅ResearchRabbit
Busca papers, crea alertas
Mantente actualizado, visualiza papers, descubre redes de artículos y autores, accede a recomendaciones según tus gustos, resúmenes personalizados, crea y comparte tus colecciones
El Spotify de la investigación! buff.ly/3KjWL1d
✅ChatPDF
Sube el PDF del paper y comienza a hacerle preguntas
Resume el documento y da ejemplos de preguntas que podría responder basándose en el artículo completo
Facilita la lectura y el análisis de artículos de revistas científica buff.ly/3zvriFJ #GPT4#Researchtools
• • •
Missing some Tweet in this thread? You can try to
force a refresh
🤯 Por piensas que con solo mirar coeficientes y R² tienes todo bajo control en tu modelo de regresión... 🤨
🔥 El Cuarteto de Anscombe: Cuatro datasets, un mismo modelo… pero con realidades completamente distintas. 🔥
🧵Soluciones...👇
#stats #analytics #datascience #DataViz
Estos cuatro conjuntos de datos tienen:
✅ Misma media en X e Y
✅ Misma varianza
✅ Misma correlación
✅ Mismos coeficientes de regresión
✅ Mismo R²
📉 Pero cuando los graficas… descubres el desastre 🤯
💡 Errores clave en un modelo de regresión:
❌ 1. Asumir linealidad sin verificarla
No todas las relaciones son lineales. Ajustar una línea recta a un patrón curvo es un error clásico.
Solución: Graficar y evaluar modelos más flexibles como regresión con splines o GAM.
¿No sabes qué modelo de regresión usar? ¿Te confunden los términos LM, GLM, GAMM y demás siglas raras? 🌀 LO INTENTARÉ EXPLICAR RÁPIDAMENTE ⏳💥👇🧵
#stats #analytics #datascience
📢 PASO 1: ¿Tu variable respuesta es continua?
✅ Sí → Modelo Lineal (LM) (SI SE CUMPLEN SUS SUPUESTOS).
🚫 No → ¡Sigue leyendo! 👇
📢 PASO 2: ¿Tu variable respuesta es binaria, de conteo o de proporciones?
✅ Sí → Modelo Lineal Generalizado (GLM) (elige la familia adecuada: binomial, Poisson, gamma, etc.)
🚫 No → Vamos más profundo. 👇
1️⃣🔥 Ocultan la variabilidad → ¡Pueden hacer que datos diferentes se vean iguales!😵
👉📊 Los barplots NO te muestran la forma real de los datos, solo la media y el error o la incertidumbre.
🚨Datos con distribuciones totalmente diferentes pueden parecer idénticos en un barplot.
2️⃣ 🤯 Malas comparaciones → ¡Pueden hacerte creer diferencias que no existen! 📉
👉📊 Si los tamaños de muestra son diferentes, los IC en los barplots pueden ser engañosos.
❌ Dos grupos =medias y !=N pueden generar IC que te hagan pensar que hay +o- incertidumbre de la real.
🔥 Crear gráficos con pruebas estadísticas suele requerir varios pasos, pero {ggstatsplot} lo hace todo en una sola línea de código. 👇🧵
✅ No necesitas copiar/pegar números en un informe: los gráficos ya contienen toda la información.
#rstats #stats #dataviz #datascience
🎯 #stats + #dataviz en 1 solo paso
✅ Gráficos con pruebas paramétricas, no paramétricas y robustas
✅ Formato APA listo para publicar 📑
✅ Muestra automáticamente N 📊
✅ Mezcla caja + violín para mejor visualización 🎻
✅ Incluye tamaños de efecto, IC y pruebas bayesianas
📌 Funciones:
📊 ggbetweenstats → Compara entre grupos (violín + caja)
📊 ggwithinstats → Compara dentro de grupos
📊 gghistostats → Histogramas
📊 ggscatterstats y ggcorrmat → Correlaciones
📊 ggbarstats y ggpiestats → Barras y pie
📊 ggcoefstats → Regresión y metaanálisis
🧐 Si quieres gráficos rápidos, elegantes y sin sufrir, prueba {tinyplot}🔥
✅ Gráficos en base R sin complicaciones
✅ Agrupaciones y leyendas automáticas en un solo paso
✅ Facetas sin sudar la gota gorda (olvídate de par(mfrow=...))
✅ Temas personalizables con un solo comando
📌 ¿Por qué deberías probar tinyplot?
1️⃣ Usa solo base R → sin dependencias, sin bloat.
2️⃣ Ultra ligero → instalación mínima, ideal para paquetes o scripts portables.
3️⃣ Drop-in replacement → si ya usas plot(), cambiar a tinyplot() es pan comido.
🎯 ¡Prueba esto AHORA MISMO en tu R! 🎯
install.packages("tinyplot")
library(tinyplot)
🚀🔮✨ATENCIÓN, DETECTIVES DE DATOS ✨🔮🚀
😉 Porque aprender programación también puede hacerse de forma práctica y entretenida, hoy te traigo un desafío que pondrá a prueba tus conocimientos de R y tidyverse: la adaptación del SQL Murder Mystery. 🔎
🕵🏻♂️ Este ejercicio interactivo te convertirá en un detective de datos que debe resolver un crimen analizando bases de datos policiales. Originalmente fue diseñado para SQL por pero aquí lo abordaremos utilizando R y tidyverse.
♻️ Adaptación de Naidoo (2019) y Goyal (2024).
✨ LO QUE VAS A HACER
🧐 Dominar el manejo de datos en R mientras resuelves un caso policíaco 😎
🔮 Explorar bases de datos
🛡️ Rastrear pistas clave para acercarte al culpable
💪 Usar R y tidyverse para realizar consultas, filtrar datos y descubrir patrones ocultos.