1. As I pointed out yesterday with this graphic (now updated) the Cambridge study data shows that since December only a miniscule percentage of people without COVID-like symptoms have the virus. But it also exposes massive contradications in the official Government data.
2. First it demonstrates (for one UK city) that the much publicised claim that "1 in 3 people with the virus has no symptoms" cannot be correct if the ONS estimated infection rate is correct. Here's an informal explanation (formal proof follows later in thread)
3. In fact, if the "1 in 3" claim is correct then the ONS estimated infection rate is massively inflated - the currently reported ‘case’ numbers must be at least 8 times greater than the true number of cases.
4. On the other hand, if the ONS estimates of case numbers are correct, then at most 1 in 26 people with the virus has no symptoms. Note "1 in 3" as claimed.
5. Of course in reality, a positive test should not be equated with a 'case' because of false positives (especially for those without symptoms since mass testing started). The infection rate has certainly been inflated. Not by a factor of 8 - but we simply don't know by how much
6. If, for example, the true infection rate was about half the reported infection rate, then it would mean about 1 in 13 people reported positive have the virus.
7. Conclusions? Since mass testing began many of those classified as 'cases' were not COVID-19. And the Government claim that "1 in 3 with the virus has no symptoms" is massively exaggerated. This analysis applied to one UK city. But there's no reason to believe it's special ....
8. We should stop testing people without symptoms unless they have been in recent contact with a person confirmed as having the virus....
9. And here are the proofs. Part 1 ....
10. Part 2 ....
11. Part 3
12. Blog posts with links etc. (to be updated) probabilityandlaw.blogspot.com/2021/02/the-ca…
I meant "Not" not "Note"
13. Forget to mention another key conclusion: there needs to be confirmatory testing for any people testing positive beofre they are declared a 'case'.
14. And it's always interesting to compare number of NHS 999 emergency COVID-19 calls/triages with number of 'cases'. This data (digital.nhs.uk/dashboards/nhs…) clearly shows real pandemic last spring but not '2nd/3rd waves'. All caveats discussed here probabilityandlaw.blogspot.com/2021/01/more-o… apply
Oops point 6 should say “..would mean about 1 in 13 people reported positive have no symptoms”

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Prof Norman Fenton

Prof Norman Fenton Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @profnfenton

27 Feb
This has interesting implications for the accuracy of the official #Covid19UK 'case' data and the claim that it is critical to test people even if they don't have any COVID-19 symptoms. No fancy analysis here. Just the raw data from the Cambridge University study of asymptomics
aysomptomatics (not asymptomics!!!). All the relevant links here: probabilityandlaw.blogspot.com/2021/02/the-ca…
This report says 9,480 of 2,372,358 lateral flow tests in UK 28 Jan - 3 Feb were positive. Given false pos rate for these tests that's about 1 in 1587 true positives. In same period ONS estimated UK infection rate was 1 in 77. gov.uk/government/pub…
Read 6 tweets
18 Dec 20
1/3. The UK #COVID19 testing data since September by different regions reveals a very close correlation between number of people tested and the proportion who test positive (i.e. the positivity rate)....
2/3 ...not clear what if any causal explanation there is to such a close correlation. But indications are that an increasing positivity rate may not be due to an increase in underlying infection rate... A full discussion is here .. probabilityandlaw.blogspot.com/2020/12/uk-cov…
3/3 ... and lockdown decisions could result purely from decisions to increase testing. All the usual caveats apply (and in this case this analysis has been done in a hurry to get it out, as the results seem so unusual and could not be seen from looking at the overall UK data)
Read 5 tweets
17 Oct 20
1. Some people taking issue with my earlier plot of daily new covid hospital admissions as % of new cases don't seem to understand the fundamental limitations of ALL the analyses based on the daily data provided by the government - as summarised in this graphic...
2. They thought I didn't understand that the April peak was largely explained because then it was mainly hospitalized people being tested. As I work on CAUSAL modelling and analysis we were highlighting this very problem back in March ... theconversation.com/coronavirus-co…
We have produced numerous reports exposing the flaws of much published statistical analysis on Covid because of the failure to account of causal factors and explanations. My blog post from last week provides some context and links to much of this work. probabilityandlaw.blogspot.com/2020/10/why-we…
Read 6 tweets
17 Oct 20
1. (This is a corrected version of tweet I just deleted). Some perspective on #CovidUK hospital admissions. Here's an update of another graph (using data from coronavirus.data.gov.uk) that never seems to be shown. Daily number of new covid admissions as % of new cases.
2. So 87% of 'cases' at March peak resulted in hospital admissions. Now it's just 4.6% and is actually decreasing. And that's despite: increased repeat hospital testing now (so more false positives), and hospital admissions always go up in October.
3. And note: a person entering hospital with a non-Covid condition who, for example, tests positive after 3 weeks and several negative tests, is counted as a Covid admission.
Read 8 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Too expensive? Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal Become our Patreon

Thank you for your support!

Follow Us on Twitter!