Incidencia de casos y presencialidad en PBA: tratando de entender lo que dice esta nota, le pedí ayuda al amigo @plenque con unos datos. Sale un hilo explicativo no tan largo, ahí vamos:
(1/10)
Quería ver como calcularon el dato que dio AK: al viernes la incidencia era 401 casos cada 100 mil habitantes en Conurbano (acumulados en últimos 14 días). Ello hace que, de acuerdo al criterio que siguen (menos de 500 casos cada 100 mil), se decida reabrir escuelas.
(2/10)
Lo más cerca que llegamos fue a 407 casos cada 100 mil habitantes en Conurbano al día viernes. Se llega usando la información de casos de acuerdo a Fecha Inicio Síntomas (FIS). Que no es la métrica especificada en el DNU, pero supongamos que sirve.
(3/10)
En términos gráficos, la historia sería esa: últimos días la incidencia acumulada cae, por primera vez desde que cerraron las escuelas, por debajo de 500. Resultado, se abren las escuelas.
(4/10)
Pero hay un grave problema con esto: FIS del reporte de cada día tiene right-censoring, el día que se reportan los datos, no hay casi casos con gente cuyos síntomas hayan comenzado ese día. Y muy pocos el día previo, y así sucesivamente.
(5/10)
Entonces, en el acumulado de 14 días calculado cada día, le faltan datos. Y esos datos se irán completando en días sucesivos. No se debería haber calculado el acumulado al viernes, sino a varios días antes, donde los datos ya están más o menos completos.
(6/10)
Ejemplo, si viernes 04/06 se hacía mismo cálculo daba 443 casos c/100 mil --> deberían haberse abierto escuelas.
Sin embargo, con la info que se fue completando durante la semana, el viernes 11/06 sabíamos que el viernes 04/06 había al menos 657 casos c/100 mil.
(7/10)
Más en general, si el cálculo del viernes pasado se hubiese utilizado en cada momento del tiempo desde que se cerraron las escuelas, desde inicios de mayo deberían haber permanecido abierta la mayoría de los días.
(8/10)
Otro punto de vista: si viernes usaban datos "completos", el criterio no hubiera permitido la apertura de las escuelas.
De hecho, viernes próximo (18) vamos a saber que al viernes pasado (11) los casos no eran 401 cada 100 mil, sino alrededor de 600 cada 100 mil.
(9/10)
Ese 50% adicional de casos acumulados lo calculo comparando las dos curvas, la completa y la incompleta, ahí ven que luego de un tiempo hay una diferencia grande, la que se achica hasta coincidir en el último día. Y que se ampliará en los próximos días.
(10/10)
Bonus: lo que quiero decir ya lo resumió sabiamente en un solo tuit Mauro:

• • •

Missing some Tweet in this thread? You can try to force a refresh
 

Keep Current with Leo Tornarolli

Leo Tornarolli Profile picture

Stay in touch and get notified when new unrolls are available from this author!

Read all threads

This Thread may be Removed Anytime!

PDF

Twitter may remove this content at anytime! Save it as PDF for later use!

Try unrolling a thread yourself!

how to unroll video
  1. Follow @ThreadReaderApp to mention us!

  2. From a Twitter thread mention us with a keyword "unroll"
@threadreaderapp unroll

Practice here first or read more on our help page!

More from @ltornarolli

21 May
Esto si que creo que es lo último que voy a escribir sobre el diff-in-diff (DiD) de presencialidad y contagios. Se llamará:

"Abrir bares acelera la baja de contagios (o como DiD sin un contrafáctico adecuado no identifica causalidad)"
(1/5)
Hice exactamente el mismo ejercicio que en el informe discutido la semana pasada, solo que para estudiar otro evento: la apertura de bares en CABA del 31/08 del año pasado.
En ese momento se juzgo la decisión como una ruleta rusa o algo así
(2/5)
El ejercicio muestra que CABA y AMBA (sin CABA) venían siguiendo una trayectoria parecida, pero que CABA, a partir de que decidió abrir los bares se distanció de AMBA (sin CABA), reduciendo los contagios a mayor velocidad:
(3/5)
Read 5 tweets
15 May
Voy a intentar dar algunas precisiones más, tratando de ser constructivo. Esta discusión no es algo que uno deba tomar personalmente, sino simplemente seguir lo que dice la ciencia al respecto.
Voy con un hilo:
(1/n)
Cuando se quiere evaluar el impacto de una intervención, y proveer conclusiones causales, se deben seguir ciertos pasos, que ya están establecidos por científicos. No se trata de cuestiones de fe, de cosas que pueden verse a ojo, ni obviamente de cosas ideológicas.
(2/n)
Ejemplo conocido por muchos, a partir de Sputnik y otras: las vacunas. En ese caso, la efectividad se comprueba con un experimento aleatorio controlado. Al ser "controlado", se puede elegir un grupo de control (recibe un placebo) y uno de tratamiento (vacuna).
(3/n)
Read 16 tweets
26 Mar
Van unos tuits sobre el debate Distribución vs. Crecimiento, basado en datos de América Latina (y de algunos otros países).
El gráfico siguiente sitúa a los países de nuestra región en términos de distribución (Gini, eje Y) y nivel de ingresos familiares (eje X):
En el contexto de LatAm, Argentina todavía se ubica en el cuadrante de países con niveles de ingreso relativamente alto y desigualdad relativamente baja.
Los cuadrantes son arbitrarios y contextuales: todos los países de la región tienen desigualdad alta en el contexto global.
Cómo se traducen esas relaciones ingreso/distribución en pobreza?
No hay una relación tan simple, Gini e ingreso medio son medidas que resumen la distribución del ingreso, pero no representan su "forma" en detalle.
El ranking de ARG en la región depende de línea de pobreza usada.
Read 12 tweets
26 Mar
Hoy INDEC comenzó a publicar información socioeconómica de finales de 2020, en este caso de mercado laboral del Trimestre 4. La semana que viene va a publicar el número de pobreza del Semestre II de 2020.
Qué sabemos al respecto?
Va un hilo no tan largo
(1/n)
Último dato de pobreza es Semestre I: 40.9%. Incluye un Trimestre "normal", sin pandemia, y otro "anormal" con pandemia y, sobre todo, con cuarentena fuerte.
Semestre II es algo menos "anormal", con menos cuarentena, pero más pandemia y arrastra los efectos del Trimestre 2
(2/n)
Qué paso con el empleo?
El indicador más apropiado para mirar, a mi juicio, es empleados cada 100 habitantes: después de un mínimo en Trimestre 2, se comenzó a recuperar al relajarse la cuarentena. En Trimestre 4 aún está en niveles menores a los de antes de la pandemia.
(3/n)
Read 11 tweets
22 Feb
Si tuviera que chequear esta nota diría que, como mínimo, es ENGAÑOSA.
En los siguientes tuits explico las razones 👇
ipypp.org.ar/2021/02/13/37m…
La afirmación "3.7 millones de personas salieron de la [...] pobreza" proviene de comparar tasas de pobreza de 2do y 3er trimestre 2020, donde hay caída de 8 puntos y algo.
Al aplicar esa caída a la población nacional (aprox. 45 millones), se llega a ese 3.7 millones.
Pero...
1- La EPH no cubre a la población total del país, por lo que la proyección supone mismo comportamiento en 1/3 no cubierto que en los 2/3 cubiertos, lo cual es + o - razonable)
2- La comparación supone que 2do y 3er trimestres son "comparables", lo que no es para nada razonable
Read 11 tweets
4 Jul 20
Va un hilo sobre la situación de pobreza e indigencia en países de América Latina en los últimos 10 años, antes de la pandemia, el año que viene miramos el impacto en cada uno de ellos. (1/n)
Miramos metodología oficial en todos los casos (salvo Brasil y Panamá, que miramos líneas de 3.2 y 5.5 dólares diarios), por lo que no hay que mirar niveles y comparar. Lo interesante es ver la evolución. (2/n)
Primero países que vienen bien, luego los demás. Dentro de cada grupo, no hay un orden particular.
Empiezo con Bolivia: fuerte reducción de pobreza (casi 17 puntos) e indigencia (11 puntos) entre 2009 y 2018.
Pronto van a publicar 2019.
Mejoró casi todos los años. (3/n)
Read 22 tweets

Did Thread Reader help you today?

Support us! We are indie developers!


This site is made by just two indie developers on a laptop doing marketing, support and development! Read more about the story.

Become a Premium Member ($3/month or $30/year) and get exclusive features!

Become Premium

Too expensive? Make a small donation by buying us coffee ($5) or help with server cost ($10)

Donate via Paypal Become our Patreon

Thank you for your support!

Follow Us on Twitter!

:(