Suddenly, iron dissolved in the oceans bonded with oxygen and precipitated, forming layers of rust on the ocean floor. The deposits got thicker and thicker, reaching 100s of meters. 60% of iron is mined from these layers! 2/n
Methane was no longer stable: it reacted with oxygen to form CO2. Methane is a far more powerful greenhouse gas - so dropping methane levels triggered sudden cooling. The Earth froze over, with glaciers reaching as far as the tropics. 3/n
How do you break out of snowball Earth? Ice reflects sunlight, so with more ice, Earth absorbs less heat. It might have stayed frozen over forever, except that volcanoes kept pumping carbon dioxide into the atmosphere, increasing greenhouse gases. 4/n
A handful of species survived the oxygen and the glaciations. But it wasn't until over a billion years later that these evolved into Earth's first plants and animals. Our ancestors, and those of all life we know today.
6/end
• • •
Missing some Tweet in this thread? You can try to
force a refresh
People sometimes talk about how the seafloor is one of the great unexplored mysteries - and it's true - but there's a vast region of land that also qualifies: the Tibetan Plateau. 🧵 1/
Standing at ~4.8 km above sea level (15,700 ft), the Plateau is extremely inhospitable to humans: oxygen is almost halved compared to sea level. Operating at this altitude is difficult: movement is exhausting, thinking is hard. 2/
First, let's define "prediction". A useful #earthquakeprediction will tell you where, when, and how big a significant #earthquake will be, with a reasonably high success rate.
Stress is basically how much the rocks are being squeezed, and in which direction. If we can know that, and also know how *strong* the rocks are, we can estimate whether they will break.
When rocks *do* break (#earthquake!), we can use that to estimate stress. If you know the direction of slip, you can do even better. This even works for earthquakes that occurred long ago, if they left scratches on the fault!
Or, if you have a lot of money and time, you can drill into the Earth and measure the orientation of maximum squeezing based on how the borehole deforms. #boreholebreakouts
A Mw6.6 #earthquake just occurred below the W tip of #Java, #Indonesia. Here, the Indo-Australian Plate is sinking below the Sunda Plate. To the north, this #subductionzone produced the devastating Mw9.1 2004 Indian Ocean earthquake and tsunami. 🧵1/5
The earthquake depth (~35-45 km) is similar to the plate boundary fault, but the focal mechanism shows slip on a steeply dipping thrust fault. This likely represents a hanging wall splay fault, or fracture of the downgoing plate. 3/5
Ever look at global #earthquakes from the top down? The #NorthAmericanPlate and #EurasianPlate seem simple around the Atlantic - they're pulling apart - but if you follow that boundary across the pole to Russia, it gets weird and diffuse. 🧵1/4
#Iceland provides a remarkable view of the plate boundary. Here, the plates are pulling apart over a #hotspot, so the spreading center is on land instead of at the bottom of the sea.
But follow that plate boundary past the pole and under the ice, and you find yourself in Russia. Suddenly the #earthquakes are scattered and the plate boundaries poorly defined.
There's actually a whole extra baby plate here - the #OkhotskPlate. 3/4
The "lumpiness" comes from variations in density and topography. Mountains have gravity, so the #geoid is generally higher in mountainous regions. But inside the Earth there are variations, too - from the different kinds of rocks and the thickness of the crust. 2/7
Elevations on Earth are defined relative to the geoid. So every time you look at a topographic map, there's a secret geoid hidden behind that data! 3/7